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A B S T R A C T

How did our nomadic ancestors continually adapt to the seemingly limitless and unpredictable number of 
dangers in the natural world? We argue that human defensive behaviors are dynamically constructed to facilitate 
survival in capricious and itinerant environments. We first hypothesize that internal and external states result in 
state constructions that combine to form a meta-representation. When a threat is detected, it triggers the action 
construction. Action constructions are formed through two contiguous survival strategies: generalization stra-
tegies, which are used when encountering new threats and ecologies. Generalization strategies are associated 
with cognitive representations that have high dimensionality and which furnish flexible psychological constructs, 
including relations between threats, and imagination, and which converge through the construction of defensive 
states. We posit that generalization strategies drive ‘explorative’ behaviors including information seeking, where 
the goal is to increase knowledge that can be used to mitigate current and future threats. Conversely, speciali-
zation strategies entail lower dimensional representations, which underpin specialized, sometimes reflexive, or 
habitual survival behaviors that are ‘exploitative’. Together, these strategies capture a central adaptive feature of 
human survival systems: self-preservation in response to a myriad of threats.

1. Introduction

Darwin’s observations across the archipelagos of the Galapagos 
Islands revealed that when organisms are faced with different ecological 
obstacles, they genetically adapt their physical phenotypes and behav-
iors to survive and flourish. Latent within the Darwinian framework is 
the notion that when the ecological dimensionality is low, species evolve 
to specialize and possess a genetic predisposition that tailors them to 
specific habitats (Darwin, 1859; Futuyma and Moreno, 1988; Finlay 
et al., 2001; Poisot et al., 2011). Such genetic profiles can result in 
biological stasis and a constrained yet effective range of survival stra-
tegies, particularly if the environment remains stable. While evolution 
often favors specialization, unpredictable or volatile ecological pres-
sures—such as invasive predators, food depletion, or meteorological 
disasters can render the organism prone to extinction (Futuyma and 
Moreno, 1988; Gurevitch and Padilla, 2004; Carthey et al., 2017). As the 
renowned evolutionary biologist Ernst Mayr pointed out: 

“Whenever a species acquires a new capacity it acquires, so to speak, 
the key to a different niche or adaptive zone in nature.” (Mayr, 2001; 
p 208).

These new capacities form in several ways: (i) over evolution, where 
the organism evolves physical phenotypes including biological ma-
chinery that promotes survival. This includes ‘fitter phenotypes’ 
including sensory ‘threat detection’ capabilities, reproductive adapta-
tions (e.g., fecundity or where the organism produces more offspring 
than can survive), and body plans (e.g., shells, spikes); (ii) over the or-
ganism’s lifetime, where survival pivots on the organism’s learning and 
behavioral adaptability. The organism’s ability to integrate and oscillate 
between these strategies reflects different approaches to survival in 
ecologies that can be conceived from low to multidimensional 
(Hutchinson, 1957; Ingram et al., 2018). Generalizers respond to novel 
and high-dimensional environments by flexibly linking a large array of 
concepts and behaviors in an experience-dependent manner (Futuyma 
and Moreno, 1988), but at the cost of a relatively high sampling 
requirement. Theoretically, multidimensional environments can refine 
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generalized models of the world and foster specialized repertoires, 
thereby providing a mixed profile of specialized and generalized stra-
tegies and a way for organisms to survive across multiple landscapes.

In this article, we put forward the Dynamic Survival Coding (DSC) 
framework, where human defensive behavior involves a collection of 
internal and external states that are dynamically constructed to facilitate 
survival across multidimensional environments. We examine specialized 
and generalized defensive strategies through the lens of survival de-
cisions in humans, yet often discuss them in the context of research on 
other species to enrich our discussion. We aim to solve the disparity 
between ecological and contemporary affective models of defensive 
states by synthesizing models that extend from hardwired (e.g., Jaak 
Panksepp; LeDoux, 2012) to constructed emotions and behaviors (e.g., 
Feldman-Barrett et al., 2016). Our perspective reshapes the prevailing 
contemporary neuroscience framework by challenging the conventional 
dichotomy between reactionary and reflection systems by suggesting 
that specialization provides a successful solution to recurrent threats, 
and generalization strategies allow for ways that prey can survive an 
almost infinite number of dangers.

1.1. Limitless hazards and survival

Any serious theoretical synthesis of how the organism computes 
threat must consider their ecological conditions and the natural di-
versity of dangers they face (Fig. 1A and B; Fanselow and Lester, 1988; 
Mobbs, 2018). Predators, for example, have different attack strategies, 
such as stealth and speed, which are often tied to the environment (e.g., 
open plans or dense forests; Fig. 1C). As we discuss below, defensive 
behaviors are molded and elicited depending on the specifics of the 
threat, including whether a predator is spatially close/distant, vola-
tile/stable, of high/low potency, and recurrent/novel dangers (Fig. 1B). 
When combined with the physical phenotypes of the predator (e.g., 
venom, speed, camouflage, and power; Fig. 1D), their behavioral stra-
tegies (e.g., stealth, group attack; Fig. 1D) and the structure of the en-
vironments (Fig. 1C), these dimensions produce almost limitless ways 

that predators can kill their prey. Further, the brain never experiences 
the exact same threatening situation twice. To account for these com-
plexities, we hypothesize the need for a system that creates a 
meta-representation of all the internal and external states and matches 
them to previous experiences. Here a pattern detection and similarity 
comparator are critical to devising a successful survival plan. A flexible 
system is also critical to most species as the natural predators an or-
ganism faces may change throughout its life (Sih et al., 2000) and the 
shift may occur from seeking parental protection to avoiding the threat 
(Sullivan and Opendak, 2018).

One influential model is the Threat Imminence Continuum proposed 
by Fanselow and Lester (1988), which classifies threat levels into three 
core categories based on their imminence (Fig. 2A). However, while 
instrumental, the Threat Imminence Continuum does not encompass 
every aspect of natural conditions, notably factors including threat 
predictability, potency, and organism’s perception of safety (Fig. 2B). 
Together, these environmental conditions will determine the kind of 
defensive strategy an organism might employ (Mobbs et al., 2020; 
Tashjian et al., 2021).

Based on environmental and sensory statistics, specialized organisms 
will use recurrent hard-wired and learned Pavlovian responses that are 
highly predictive of threats in their ecology. When a threat is present, 
sensory cues – like smell, sound, or visual stimuli – will prompt the or-
ganism’s reflexive reactions toward danger. In rodents, for example, 
these sensory cues result in reflexive defensive behaviors such as 
freezing and, if attacked, escape. On the other hand, generalizers not 
only tailor their strategies to adapt to new and unpredictable environ-
ments but also plan for potential encounters with threats with which 
they may have no prior direct experience. This proactive approach to 
danger, or pre-empting danger, implies that they rely on inference, even 
when sensory cues are absent. Within the realm of reinforcement 
learning, these responses overlap with both model-free (e.g., habitual) 
and model-based (e.g., deliberative) learning (Section 3.3.1). Indeed, 
having a broader repertoire of strategies increases the ability for intro-
spection and prospectively anticipate a larger variety of situations. To 

Fig. 1. Examples of the multidimensional complexity of danger. (A) three core levels of threat, each providing different survival strategies; (B) Each level of threat 
has four dimensions each with different threat statistics; (C) Examples of abiotic features landscapes including forests, open savannas, and water across day-night 
cycles; (D) Examples of the different types of predator strategies used in nature. Note that predators can combine or use more than one strategy. Together A-D 
provides examples of the complexity of predicting and responding to threats, therefore resulting in a set of survival states that need both Specialization (S)-strategies 
and Generalization (G)-strategies. Note that we focus on predation and other dangers such as threats to, for example, reproductive and nutritional needs, which are 
not discussed, but would add to the dimensionality of danger.
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streamline this concept, we consolidate the Threat Imminence Contin-
uum model into three key modes each leading to specific defensive sets 
and actions.

1.2. Before danger

The period without danger can be placed into two modes, as iden-
tified by Fanselow and Lester (1988). The first is the “safe mode”, during 
which an animal finds itself in a danger-free zone, such as being in a safe 
refuge or home dwelling. While there is no danger present in this state 
animals, particularly humans, could employ episodic and prospective 
systems to imagine past dangers and anticipate the likelihood of po-
tential future dangers. By doing so, they can formulate preventative 
behaviors that minimize future encounters with dangers. These pro-
spective systems are present in both specialized and generalized 
encounter scenarios. For recurrent encounters, prospective systems 
facilitate fast responses by priming neurons (e.g., meta-plasticity; 
Abraham, 2008) to respond in an adaptive manner. Additionally, pro-
spective systems allow us to stimulate and work through possible 
dangerous scenarios that can occur, creating G-strategies for a variety of 
threats. To illustrate, one might think, “If the predator attacks this way, I 
have a pre-planned defensive response ready.

The second mode, known as the “pre-encounter threat mode”, is 
characterized by an environment with an absence of immediate threats 
but with a heightened possibility of encountering one. This mode sig-
nifies minimal anxiety and avoidance due to threats. During this mode of 
threat, various cognitive and behavioral systems are activated, including 
potential attack predictions (i.e., predator location), vigilance, and 
cautious behaviors (e.g., intermittent locomotion; Kramer and 
McLaughlin, 2001). Before danger, organisms can harness remote tem-
poral threat associations to build G-strategies observed in neuronal 
populations linked to slower and more deliberate cognitive processes. 

Prediction systems, like imagination, are advantageous; they enable the 
organism to preempt attack, therefore minimizing surprises and 
reducing the immediate need to seek protection (Mobbs et al., 2015). 
The prediction system further manifests protective behaviors, ranging 
from risk dilution behaviors like group living (Hamilton, 1971; Tedeschi 
et al., 2021) to niche construction, where organisms create safer envi-
ronments such as nests, burrows, or walls (Mobbs et al., 2015).

1.3. Present danger

The presence of a predator prompts an assessment spanning multiple 
dimensions: volatility, potency, spatiotemporal proximity, and novelty 
(Fig. 1B). The factorial nature of these four components of threat 
assessment will determine the configuration of neural systems, in turn 
determining the defensive strategies and subsequent behaviors elicited. 
They involve a mixture of generalized and specialized representations, 
where the distal threat will result in behaviors resembling those seen 
during pre-encounter phases, yet increasing urgency pushes the organ-
ism to more reactive fear-like processes (e.g., active vs. passive avoid-
ance). These responses are modulated by competing variables, including 
mating and nourishment needs, proximity to safety, and the presence of 
offspring (Mobbs, 2018).

Present and non-attacking threats characterize Fanselow and Lester’s 
(i) post-encounter threat, where a threat is present in the environment 
yet there is no direct predator-prey interaction. Within this context, 
specialized neurons will result in freezing as an innate defensive 
response. Indeed, Fanselow and Hoffman (2024) suggest that freezing is 
adaptive as movement triggers attack responses in predators. However, 
the prospect of flight reaction becomes plausible if a safety refuge is 
close (Blanchard and Blanchard, 1989). Such survival decisions might be 
governed by neuronal populations stimulating potential predator ac-
tions and strategizing escape routes, potentially supported by neural 

Fig. 2. Examples of specialization and generalization in defensive phenotypes and learning. (A) Examples of different cognitive, behavioral, and phenotypic stra-
tegies associated with generalization and specialization. Defensive behaviors are determined by the predator landscape. The defensive phenotypes (i.e., shell, speed, 
or spikes) will have constraints that will impact other defensive responses. Although species-specific, these different strategies change as the organisms go from being 
dependent on the parent to being independent; (B) Adaptive behaviors are segregated into generalized and specialized systems (grey dotted lines) via learning 
(Modified from Ricklefs and Wikelski, 2002). These behaviors increase survival probability and fitness. (C) Examples of G-strategies and S-strategies and learning. 
Specialization begins at the level of the physical phenotype – this, in turn, will influence the type of learning needed in the organism niche. Basic innate and 
Pavlovian learning are used when encountering recent threats. Generalization learning strategies are used when predations become more complex and 
high-dimensional. Transfer learning facilitates the dynamic cross-fertilization of knowledge.
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reactivation and replay of prior attack encounters (Wise et al., 2021, Wu 
et al., 2017). Here, G-strategies will collect information on the danger 
and use for the current and future threat (See 5.1)

The highest level of threat is the (ii) circa-strike level, marked by the 
predator’s attack on the prey. During a circa strike, S-strategies like 
protean escape (e.g., zigzagging; Humphries and Driver, 1970), come 
into play to a greater extent. These unpredictable movements impede 
the predator’s chase. It is worth noting that these are effective for 
predators that the organism has an evolutionary history (i.e., S-strate-
gies may fail when encountering new dangers). Proximal threats also 
induce an uncoordinated panic in the prey, further adding unpredict-
ability to the prey’s movements and challenging the predator’s ability to 
anticipate their next move (Humphries and Driver, 1967). When all 
escape routes are blocked, the prey resorts to defensive attacks (e.g., 
fight responses). The goals of the prey are to increase the distance be-
tween itself and the predator and to escape to safety. Finally, as the 
predator draws closer, the prey will prepare for contact by eliciting 
analgesic responses that facilitate escape (Mobbs et al., 2015).

1.4. After danger

Following an encounter with the threat, humans (and potentially 
other mammals), will go through two post-threat learning processes: 
conscious post-danger evaluation and non-conscious post-threat replay. 
(i) Post-threat evaluation. After a threat, the organism taps into episodic 
memory systems to reimagine the encounter. This process will be used 
for explicit or conscious prospection strategies. Not only does it help in 
reflecting on the successful escape from the threat, but it also aids in re- 
imagining alternative future scenarios that could be detrimental or 
beneficial in the future. An illustrative thought might be: “The next time 
I go to the forest, I will take a gun or knife.” (ii) Post-threat replay. This 
process is marked by the reactivation of spatially-tuned neurons in se-
quences that previously resulted in successful threat avoidance (Louie 
and Wilson, 2001; Pezzulo et al., 2014). Interestingly, the same neuronal 
sequences can activate even before encountering a similar threat in the 
future, a phenomenon that could be termed “pre-threat pre-play”. In 
turn, this replay mechanism reinforces threat-related neural activity, 
thus optimizing the organism’s decision for future encounters. One hy-
pothesis is that replay increases survival in response to recurrent threats 
by sharpening action-outcome predictions.

In sum, these different modes of danger will result in a set of con-
textually appropriate defensive actions in organisms. Selection pressures 
have honed the nervous system to respond as quickly and accurately as 
possible. Nonetheless, learning often unfolds under conditions that are 
novel or ambiguous, necessitating deeper information-seeking and 
integration. In the context of natural selection, defensive behaviors will 
alter in response to the amount of knowledge the organism has about the 
environment and its dangers. This will result in either S-strategies that 
have been successful in combating similar predators in the past, or new 
threats will require new and creative approaches as captured in G- 
strategies. In turn, the chosen actions will increase or decrease survival 
probability and fitness (Fig. 2A), which are embedded in adaptive 
physical phenotypes and behaviors associated with G-strategies and S- 
strategies (Fig. 2B). Additionally, mechanisms such as transfer learning 
(Fig. 2C) and cognitive reuse (Anderson, 2010) are crucial for devel-
oping G-strategies that can be refined into specialized tactics when 
necessary.

2. Multiple roads to survival: the concepts of G-strategies and S- 
strategies

The natural world encompasses a spectrum of predictability and 
unpredictability, featuring environments ranging from low to high and 
multidimensional ecologies. In low dimensional ecologies, where the 
predictability is high, organisms have limited cognitive capacity and 
survive by utilizing a set of specialized behavioral and physiological 

phenotypes that genetically endow the organism with a successful set of 
tools to combat ecological dangers (Fig. 1A, B, and C). These tools 
represent what we call S-strategies. Conversely, high or multidimen-
sional ecologies drive the organism towards physical phenotypes that 
combat a diversity of dangers, while the ability to have multiple 
behavioral strategies allows for flexibility and creativity when facing a 
new threat. We refer to these as G-strategies.

2.1. G-strategies

At their core, G-strategies are dependent upon an organism’s ability 
to grasp the sensory and abstract structure of the world and to extrap-
olate beyond direct experiences. This yields cognitive heuristics and 
maps that link previous experiences, enabling the organism to creatively 
anticipate and counter novel threats. Models of brain representations of 
abstract relational structure (Kaplan and Friston, 2018; Kaplan et al., 
2017; Whittington et al., 2019) suggest that hippocampal-entorhinal 
systems play a pivotal role. Place and grid cells in the 
hippocampal-entorhinal systems recast spatial and relational memory 
into abstraction, facilitating G-strategies (Moser, Kropff, and Moser, 
2008). Further, this suggests that the cortex is involved in constructing 
generalizable (or domain-general) responses to many new challenges.

Contemporary models of the brain’s capacity to represent abstract 
relational structure cast the process as an extension of basic spatial 
cognitive maps. This is inspired by Edward Tolman’s work in the 1930s. 
Tolman showed that rodents learn about the structure of a maze, and can 
use that knowledge to take shortcuts – a demonstration of internal world 
modeling, or a cognitive map. More recent work has demonstrated that 
humans extend this cognitive mapping process, instantiated in the ac-
tivity of grid cells, to even non-spatial, abstract knowledge 
(Constantinescu, O’Reilly, and Behrens, 2016). Such abstract relational 
mapping of the environment offers two key advantages when avoiding 
threats. First, it lets one transfer learned abstract relationship structures 
to new contexts. Second, it facilitates conscious imagination and pro-
spection through episodic reconstruction (Hassabis et al., 2007). Here, 
humans can creatively use their imagination to anticipate danger and 
plan the best future strategy (Mobbs et al., 2015). Prospection aids in 
estimating threats by forming relational structures based on potential 
future scenarios. Additionally, it diminishes the necessity for multidi-
mensional phenotypic protection. This ability is grounded in episodic 
memory, where previous experiences are stored and then re-used to 
visualize future events (Hassabis et al, 2007). The process of episodic 
reconstruction probably relies on the hippocampal-entorhinal systems, 
the same systems that enable the brain to navigate and represent the 
structure of its environment. These systems might employ methods such 
as replay to achieve this (Wise et al., 2021; Whittington et al., 2019). 
Additionally, encounters with threats promote the generalization of 
episodic memory as an adaptive cognitive strategy to avoid various 
threats (Starita et al., 2019).

As a key part of human G-strategies, imagination, and prospection 
empower us to shape our future with strategic intent. (Suddendorf and 
Corballis, 2007). For example, I may never have experienced a tiger 
attacking me from a tree, but I can imagine that they can climb. 
Therefore, I can imagine being attacked from above and I can construct 
counter-strategies to evade attack. Likewise, prospection also allows me 
to avoid outmatched predators by imagining where they might appear 
and avoiding that space. We propose that abstract relationships, com-
bined with imagination and prospection, provide a comprehensive 
threat assessment – even for dangers never faced. Further, we speculate 
that G-strategies would be important for complex threats particularly 
those that involved danger from other humans. An abstract system that 
can model the states, ideologies, and intentions of others would be key to 
avoiding human danger. G-strategies would involve complex simulation 
systems that can navigate the complex ways that other humans can 
attack us. Vicarious social learning such as story-telling can further 
enrich the imagination (Mobbs et al., 2015). G-strategies also sit closely 
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with the idea that humans have advanced domain-general abilities 
suggesting that we have a unique ability to flexibly adapt to many 
different goals. This is in opposition to more domain-specific abilities 
observed in other animals where survival is restricted to a specific goal 
(Premack, 2010).

We speculate that G-strategies would be important for complex 
threats particularly those that involved danger from other humans. An 
abstract system that can model the states, ideologies, and intentions of 
others would be key to avoiding human danger. Further, G-strategies 
would involve complex simulation systems that can navigate the com-
plex ways that other humans can attack us. We have previously stated 
(Mobbs et al., 2015) that humans have enhanced two core systems to 
avoid such dangers – imagination and vicarious learning. These two 
systems allow us to avoid dangers without personally experiencing 
them. Imagination provides a playground from which to understand 
other’s minds (mentalizing) which is key to understanding the nefarious 
intentions of others. Further, vicarious learning allows us to learn 
through storytelling and gossip.

2.2. S-strategies

Ecological selection pressures shape the physical, behavioral, and 
cognitive phenotypes of organisms both over evolutionary periods and 
individual lifetimes. These ecological conditions often tune the organism 
towards S-strategies, optimizing energy and time efficiency. Examples of 
S-strategies are ubiquitous in the natural world. For example, Koalas and 
Panda bears have evolved extreme diets limited to eucalyptus leaves and 
bamboo, respectively. Similarly, specific adaptive responses to threats 
are observed when it comes to physical defenses against sympatric 
predators. For example, the honey badger’s resistance to puff adder 
venom (Drabeck, Dean, and Jansa, 2015), the Rove Beetle’s appease-
ment gland that discourages the ant attack . As Futuyma and Moreno 
state: 

“It is not surprising that narrow physiological tolerances are some-
times found in organisms that inhabit relatively constant environ-
ments” (Futuyma and Moreno, 1988; p241)

In conjunction with defensive physical phenotypes, S-strategies form 
behavioral adaptations to recurrent threats. For example, terrestrial 
animals are often imprinted with innate responses to aerial threats. 
Monkeys, when faced with looming stimuli, respond with escape and 
defensive calls (Schiff, Caviness, and Gibson, 1962). Likewise, rats and 
mice exhibit freezing behaviors when exposed to 2,4,5-trimethylthiazo-
line (TMT)-an odor reminiscent of fox secretion (Wallace and Rosen, 
2000; Brechbühl et al., 2013). Additionally, they exhibit thigmotaxis in 
open mazes, a tactic to minimize their visibility during pre-encounter 
states.

Defensive behaviors can become specialized in two ways: through 
learned and innate mechanisms. Learned specialization occurs when 
organisms consistently employ a generalization mechanism upon 
encountering familiar threats. Relevant work in reward learning has 
shown how the human brain chooses between model-based and model- 
free computation strategies based on each method’s success (Lee, Shi-
mojo, and O’Doherty, 2014). Consequently, as threats repeat, S-strate-
gies refine defensive actions, with efficiency potentially enhanced by 
better neural coding. For instance, motor learning or procedural 
learning exemplifies this – complex actions, with repetition, become 
automatic, implicit, and ingrained in long-term memory. This idea sits 
close to Johnson’s (2011) ‘Interactive Specialization’ framework where 
the brain is not just statically maturing based on rigid genetic programs 
but is constantly in flux with a dynamic interaction between genes and 
environment that results in neural specialization.

Innate components of S-strategies may evolve from genetic pre-
paredness (Ohman and Mineka, 2001) or potentially from parental ex-
periences that are passed to the offspring (Dias and Ressler., 2014). The 
idea of an innate specialized defensive circuit is also captured by the 

theoretical work of Jaak Panksepp (Panksepp, 1998), a notion also 
explored from different perspectives by researchers like Joseph LeDoux, 
(LeDoux, 2012) and others (Anderson, 2016; Mobbs et al., 2015, see 
Mobbs et al., 2019). It is crucial to recognize that while certain traits 
might be shared across species, as noted by Barsbai et al., (2021), 
S-strategies are tailored to specific species and contexts. This is often 
captured by the idea that most species evolved domain-specific abilities 
where the animals have a limited range of adaptations (Premack, 2010).

2.3. G-strategies and S-strategies are not mutually exclusive

We speculate that G-strategies and S-strategies complement each 
other through transfer learning. Likewise, repeated G-strategies can 
evolve into specialized behaviors. Yet, S-strategies may also play an 
active role in the construction of G-strategies, shaping more immediate, 
online generalizations. Research has shown that even in the realm of 
habitual responses, there is an influence on deliberative processes 
(Moran, Keramati, and Dolan, 2021) and innate anxiety behaviors 
including thigmotaxis that occurs when there is an increased chance of 
encountering a threat and may be part of information seeking or 
exploration strategies (Simon et al., 1994). Indeed, such spatial mapping 
provides a cognitive map that will facilitate later escape. Indeed, one 
study has shown that the midbrain periaqueductal gray (PAG) encodes 
sequential motor programs (Yu et al., 2021) and the hypothalamus is 
involved in versatile escape behaviors (Wang et al., 2021) and memory 
coordination (Burdakov and Peleg-Raibstein, 2020). Although struc-
tures like the hippocampus, entorhinal, and prefrontal cortices are 
implicated in more elaborate processing, there is evidence that the hy-
pothalamus and PAG would be informed by teaching signals to update 
their neuronal structure (Roy et al., 2014). This evidence underlies the 
potential of subcortical structures, often associated with automaticity, in 
shaping representations of the environment and supporting the pro-
spective action selection and scaffolding needed for G-strategies.

3. Models of survival decision-making

Models of survival often fall under the rubric of defensive decision- 
making, emotion, and computation. We propose that no single model 
looks under the hood to characterize: (i) how the organism adapts to 
complex multidimensional environments; (ii) the processes involved in 
survival decisions and behaviors (e.g., G-Strategies and S-Strategies); 
(iii) synthesize current models of emotion and (iv) incorporate compu-
tational models of survival. Below we briefly summarize each model and 
set the stage for the DSC model by integrating these models and theories 
and planting them in the context of low, high, or multidimensional 
ecologies.

3.1. Ethological models of survival

Behavioral ecologists have long theorized about the role of predation 
in survival decision-making that encompasses the dynamic interaction 
and equilibrium between predator and prey (Abrams, 2000). For 
example, Lima and Dill (1990) proposed a flow model of the different 
levels of encounters between the predator and prey. In their model, 
predation risk can be captured by the following equation: 

P(death)= 1 − exp(− αd T)                                                                  

where α is the rate of predator and prey encounters, d is the proba-
bility of death given an encounter and T is the time spent in situations of 
predation risk. Lima and Dill proposed that α, d, and T are the basic 
building blocks of predation risk and are accessible to be used by the 
prey for its benefit. If the predator is predictable or stays in the same 
patch for long periods α will be low. Access to α may also be adjusted by 
contingencies of the environment including safety distance (Lima and 
Dill, 1990). Therefore, according to this model, minimizing the number 
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of threat encounters, and reducing the level of danger and duration of 
these encounters will maximize survival.

Others have considered the active role of additional survival be-
haviors when encountering predators. For example, Moody, Houston, 
and McNamara (1996) included foraging, energy, and lifetime repro-
duction. They propose that the term y is the cost of being killed and 
hence the loss of reproductive success. In the context of increased energy 
per unit, the rate V is the value of the food to the animal. As the authors 
state: “When an animal chooses a foraging option with a net rate of 
energetic gain and predation rate its net rate of increase in reproductive 
value is” 

gV - My.                                                                                             

Together, gV is the rate at which food consumed increases repro-
duction, and My is the risk of decreased reproductive value if the 
predator kills them. This simple equation produces a shorthand of 
several variables that impact the survival of the organism. Others have 
extended their models to optimal flight distance from approaching 
predators (Cooper and Frederick, 2007), protection of offspring (Moller 
and Nielsen, 2014), and nutritional state (Moran et al., 2021). However, 
these models do not consider the strategies the organism uses to evade 
the threat.

To fill this gap, the survival optimization system (SOS) model links 
animal, ecological, and decision-theoretic models to lay out the strate-
gies that humans use to evade danger (Mobbs et al., 2015). The SOS 
model proposes that five core strategies are used when facing threats of 
different spatial and temporal proximity. These include: (i) Prediction 
strategies including imagination and prospection. If a threat is pre-
dicted, the organism can pursue (ii) Prevention strategies to avoid the 
future threat. If a potential threat enters the environment, (iii) threat 
detection strategies are engaged including bottom-up and top-down 
attention. Once the potential threat is detected, the organism goes into 
(iv) threat assessment and determines the value of the threat, how 
dangerous it is, tracks the threat’s movements, makes predictions about 
what the threat will do next, searches for safety, and determine the best 
survival action (e.g., crawl, sprint, climb). Once the threat begins to 
attack, the organism goes into (v) reactive defensive strategies such as 
flight or fight.

Feeding into these five strategies is a set of monitoring systems 
including the appraisal, reappraisal, and cognitive control of emotions 
and actions, as well as a suite of learning systems (Mobbs et al., 2015). 
Its strength is that the danger will elicit a decisive response or neural 
circuit that reflects the context (Fanselow and Lester, 1988) and shift to 
and from the subcortical to cortical systems depending on the dimen-
sionality and complexity of the threat (Mobbs et al., 2007; 2009; 2010; 
Qi et al., 2018; Faul et al., 2020). However, the model fails to capture 
several dimensions of the threat (e.g., high or low predictability), nor 
does it consider the information and how these defensive states arise 
(Fig. 1B and C). Further, like most models of survival, it fails to link 
emotional states and the dimensionality of the threats.

3.2. Affective models of survival

Ecological models of survival focus on the variables and strategic 
defensive decision-making processes, yet the emotional state that the 
organism is in and why this is useful for survival are rarely discussed. 
However, implicit in every model of emotion is how the emotion pro-
vides some survival advantage. Keltner et al. have proposed that: 

“Emotions have the hallmarks of adaptations: They are efficient, 
coordinated responses that help organisms to reproduce, to protect 
offspring, to maintain cooperative alliances, and to avoid physical 
threats” (Keltner, Haidt, & Shiota, 2006, p. 117).

This sentiment is captured in Panksepp’s theory (1988) of primary 
affective systems which posits that survival states like FEAR, RAGE, and 

PANIC are genetically determined and laid down in subcortical circuits 
that are critical to survival. While the configuration and specificity 
Panksepp ascribe to the mammalian brain are debated (e.g., not natural 
kinds; Feldman-Barrett, 2006), it is clear that the FEAR system he pro-
poses is supported by a multitude of empirical studies across species (See 
reviews of empirical literature: Gross and Canteres, 2012; Janak and 
Tye, 2015; Pellman and Kim, 2016). The observed ubiquity and 
convergence (Barsbai et al., 2021) of defensive behaviors, such as flight 
and freezing in terrestrial mammals, supports the theory that these re-
actions are intrinsic, hard-wired responses specialized for combating 
carnivore predators. Further, empirical studies show that targeted 
chemical or electrical stimulation of specific sectors of the midbrain or 
hypothalamus elicits a consistent set of defensive actions across species 
(Tovote et al., 2016; Fadok et al., 2017). Panksepp’s theory provides 
support for S-strategies in that it suggests that neural circuits underlying 
defensive behaviors are innate. However, these reactive motor output 
systems offer a glimpse into the vast populations of neurons underpin-
ning decision-making, factoring in contextual cues, memory, planning, 
and execution. A question remains on how effectively these hard-wired 
FEAR systems can navigate the more complex environments.

In contrast, Feldman-Barrett’s Emotional Construction Theory 
(Feldman-Barrett, 2006) postulates that the emotional circuits, as 
conceptualized by Panksepp (1988), are purely motor and visceral and 
thus are not directly representative of emotions. Feldman-Barrett’s 
theory also suggests that the brain is a dynamical system where neural 
networks interact with one another based on internal models that are 
pattern generators. This system aims to maintain an equilibrium, known 
as allostasis. These internal models are influenced by past experiences, 
shaping how the neural network predicts the sensory landscape of the 
environment. In turn, these predictions become conscious reflections of 
feeling states and emotions. Unpredictable events result in prediction 
errors, prompting adjustments in the central and autonomic nervous 
systems. These adjustments become perceptions that help us categorize 
the events, leading to defensive behaviors suitable for the situation at 
hand and therefore sit well with the concept of G-strategies. 
Feldman-Barrett further suggests that each emotion does not have a 
dedicated neural circuit. To support this idea, Feldman-Barrett suggests 
that fear (like other emotions) has been elusive in pinpointing biologi-
cally, and little is known about how circuits communicate, are inte-
grated, and why they so often overlap, particularly in humans.

In the context of defensive strategies, Feldman-Barrett’s model has a 
notable concern. Animals, having evolved under specific ecological 
conditions, inherit survival instincts that have been shaped over gen-
erations by both ecological pressures and natural selection. This is 
captured by Lorenz’s concept of innate releasing mechanisms where the 
organism performs some survival behavior that has not been learned (e. 
g., bird of paradise dance). From this perspective, animals are born with 
certain predispositions towards potential threats in their ecology, con-
tradicting the idea of them being a “blank slate” (McNally, 1987). As 
evident in various physical and behavioral traits, biological systems, 
such as the central and autonomic nervous systems, are primed for the 
specific dangers that are present in an organism’s ecology. While such 
biological readiness aids learning, an animal too specialized in its 
behavior is likely to be impacted when the ecology changes. Under such 
circumstances, having the ability to adaptively construct survival stra-
tegies would be advantageous. Drawing from diverse information 
sources, including memory, constructionism allows the formulation of 
new defensive strategies and would be advantageous in multidimen-
sional ecologies. While these models of emotion were designed for 
different purposes, they do not consider the G-strategies and S-strategies 
associated with different levels of threat imminence or the dimensions 
within (Fig. 1B-D).

3.3. Computational models of survival

Computational theorists have become increasingly interested in the 

D. Mobbs et al.                                                                                                                                                                                                                                  Neuroscience and Biobehavioral Reviews 167 (2024) 105924 

6 



algorithms that underlie survival decisions and learning (Bach and 
Dayan, 2017). We propose that learning can take many forms that can be 
characterized under the rubric of G-strategies and S-strategies, although 
these may often be amalgamated. The most dominant framework for 
exploring the computational basis of decision-making and survival has 
been reinforcement learning (RL). RL builds on two biological founda-
tions: the innate preparedness for specific classes of threat (LeDoux and 
Daw, 2018) and the physical phenotype of the organism (Fig. 2B). These 
two factors have evolved and represent the clearest form of S-strategies. 
RL through Pavlovian conditioning builds on S-strategies, gifting the 
organism the ability to flexibly learn about its environment. When the 
dimensionality of the environment increases, a shift to G-strategies oc-
curs. In these scenarios, cognitive and higher-order systems will elicit a 
defensive response (Fig. 2A-D). Below we discuss both model-free and 
model-based types of RL and how these account for survival across low 
to high and multidimensional ecologies.

3.3.1. Model-free RL and survival
The simplest form of survival decision-making plays out in innate 

reflexes and Pavlovian reactions that are formed through learning 
(LeDoux and Daw, 2018). These include fixed action patterns, ranging 
from simple behaviors such as freezing and thigmotaxis to more complex 
behaviors like the exotic dance of the bird of paradise. These simple 
responses to threats are implicit, not consciously goal-directed, and 
often fast. The neural pathways for innate reactions to danger that come 
from visual and olfactory sensory systems, merge in specialized amyg-
dala nuclei to create a defensive behavior via the midbrain PAG (i.e., 
freezing or flight). Instrumental behaviors, on the other hand, are based 
on action outcomes. Here, the defensive avoidance behavior becomes 
habitual via sensory systems and the dorsolateral striatum (Daw et al., 
2005). These types of computations fall under model-free RL, charac-
terized by stimulus-response association where a particular behavior has 
been reinforced in a particular context. In the context of reward, 
model-free RL is insensitive to outcome devaluation (Adams, 1982), thus 
linking the behavior to habit. Further, evidence shows that dopamine 
neurons, which are linked to RL, show specialized organization for 
sensory, motor, and cognitive variables (Engelhard et al., 2019). 
Model-free RL is one example of how S-strategies are formed.

3.3.2. Model-based RL and survival
While simple, model-free avoidance strategies can be effective, 

particularly when encountering easily predictable threats, they will 
often fail in situations where more complex avoidance strategies are 
warranted (e.g., G-Strategies). Furthermore, the requisite experience 
that informs model-free learning may not always be available. For 
example, while it is straightforward to learn from the experience of 
finding edible prey, it is less feasible to learn from the experience of 
being eaten. Model-based RL algorithms exploit an internal model of the 
world to enable more flexible avoidance behaviors that do not depend 
on direct experience, and which can generalize to new scenarios more 
easily. It is now well established that humans are capable of deploying 
model-based strategies to flexibly avoid danger and seek out safety 
(Tashjian et al., 2022). Such processes likely depend on neural reac-
tivation of relevant state representations (Wise et al., 2021), where the 
agent perspective considers the likely long-run outcome of their actions. 
Recent findings demonstrate that humans are capable of simulating 
complex scenarios incorporating predictions about predators’ 
goal-directed behavior (Wise et al., 2023), suggesting that our 
model-based avoidance abilities are both powerful and flexible in 
allowing us to simulate, and hence determine, how to avoid a multitude 
of threatening situations. Model-based strategies also provide for flex-
ible recalculation of the optimal avoidance behavior when aspects of the 
environment change, without the need for relearning (although there 
are simpler strategies that can achieve similar performance in certain 
situations, see Russek et al., 2017). Therefore, Model-based RL algo-
rithms may set the foundation for G-strategies.

In reality, model-based and model-free systems likely operate in 
concert to provide a balance between optimality and computational cost 
depending on the current context, potentially informed by uncertainty 
around the predictions of each system (Lee et al., 2014), the relative 
advantage of using the more computationally costly model-based system 
(Kool et al., 2016), or physiological stress (Otto et al., 2013). 
Model-based approaches also rely on the decision-maker maintaining an 
accurate model of the environment, which may not always be straight-
forward in complex, naturalistic environments (Mobbs et al., 2021; 
Wise, Emery & Radulescu, 2024), and may itself need to be learned via 
direct experience using model-free learning strategies (Sharp et al., 
2023). In the context of G-strategies and S-strategies, we expect similar 
processes, yet model-free and model-based RL lacks a relationship be-
tween the strategies needed across changing environments and the link 
to internal states. In the subsequent sections, we will delve into the DSC 
framework and attempt to integrate the aforementioned models.

4. The basic architecture of the dynamic survival coding (DSC) 
framework

The essence of the DSC model is that the survival goal of organisms is 
to increase their safety by mitigating threats and uncertainty and 
adapting their behavior to low, high, and multi-dimensional environ-
ments. The DSC posits that the breadth of defensive responses depends 
on the dimensionality of the ecological niche(s) in which has organism 
has evolved—and survived. Put simply, the organism evolves to reduce 
uncertainty and danger by, on one hand, utilizing G-strategies notably 
exploration, avoidance, and curiosity, and on the other hand, by 
exploiting knowledge and utilizing S-strategies. The larger the dimen-
sionality, the larger the uncertainty and the need for more sensory ev-
idence, resulting in increased inference, cognition, and information- 
seeking behaviors. We reason that humans emphasize changes in 
behavior and cognition—rather than relying on specialized physical 
phenotypes—and will continually update their neural software and 
move towards more construction and higher-order representations 
(LeDoux and Brown, 2017). Importantly, these representations not only 
provide an advantage to escaping current threats but also to avoiding 
future ones.

4.1. Internal and external states

4.1.1. Sensory information
The ecology in which the organism exists will come with specific 

statistics. Sensory systems serve as an organism’s gateway to the 
external world, allowing the prey to detect and monitor danger. Indeed, 
Donald Hoffman (2010) has proposed that we do not see the world as it 
is, but perceive the world in a way that maximizes survival. As the late 
Richard Gregory (1965) stated: 

“Eyes are biological early warning systems. By giving information of 
events distant in space they serve to probe the immediate future, 
allowing brains to transcend simple reflexes and control strategic 
behavior” p16.

Each sense provides unique input across levels of threat imminence. 
For instance, vision allows for the detection of distant or hidden threats, 
and sound and smell allow the prey to detect non-visible threats (Mobbs, 
Garg, and Tashjian, In Press). Depending on the situation and the spe-
cies, attentional systems direct an organism’s senses to focus on specific 
locations in the environment using either instinctual bottom-up or 
volitional top-down approaches. Across all species, the senses consis-
tently provide the empirical information needed to refine predictions 
and guide actions.

In mammals, vision is predominantly relied upon during the post- 
encounter and circa-strike danger. For pre-encounter, a combination 
of senses, such as hearing, becomes crucial – particularly in occluded 
environments such as dense forests (Mugan and MacIver, 2020). For 
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some mammals, olfaction has a pivotal role during pre-encounter. A 
predator’s scent can signal that the threat has been in the environment, 
prompting the prey to engage other senses such as auditory and visual 
systems for a more accurate detection of the potential presence of the 
threat. The integration of multisensory information provides a 
comprehensive perspective, aiding in the construction of an appropriate 
defensive response. In addition to sensory information, internal states, 
and inferences about the threat (Fig. 3) will also determine if a defensive 
action is executed. Importantly, organisms that have a long history in a 
circumscribed location will have sensory systems that are tuned to their 
ecology, and this is a case of an S-strategy phenotype (Fig. 1A).

4.1.2. Internal states, and drives
Internal states play a critical role in the instigation, control, and 

execution of the survival state. These states partly form what Ledoux 
(2012) has termed “survival circuits.” These include fundamental sur-
vival drives like hunger, thirst, and reproductive drives. The internal 
states of thirst and hunger deprivation can sway animals, humans 
included, between risk-taking and risk aversion. For example, work on 
animals has shown that hunger can prompt riskier foraging behaviors, 
pushing them to areas where predators might be present (Sih, 1980). 
The potential opportunity costs of losing crucial resources like food or 
water can result in the riskiest flight in mammals (Lagos et al., 2009). 

Illustrating this, one study made rats excessively hungry by stimulating 
AgRP neurons in their hypothalamus. This hunger drove the rats to 
ignore danger signals (i.e., Fox urine) in their search for food (Burnett 
et al., 2016). Furthermore, hunger has also been observed to amplify 
extinction to threats (Verma et al., 2016). Conversely, if the threat seems 
particularly potent, or the internal state is only moderate, the organism 
will suppress its activities to avoid the threat (Gray, 1987).

Survival circuits, as LeDoux (2012) points out, are “closely inter-
twined”. It is the urgency of each internal state that will partly determine 
whether a defensive state is initiated. Neural circuits tied to survival 
states work in tandem with sensory, predictive, and conscious states 
associated with danger to construct defensive states and behavioral ac-
tions. This interplay parallels the concept of allostasis where the or-
ganism attempts to maintain a balance between internal states (Sterling 
and Eyer in, 1988) and minimize allostatic load (McEwen, 1998). 
Extending on this is the allostatic-interoceptive system theory which 
suggests that the brain contains a large-scale set of interconnected cir-
cuits that support allostasis (Kleckner et al., 2017). Consistent with 
LeDoux’s survival circuits, the DSC proposes that circuits involved in 
basic life functions are key in formulating defensive responses.

4.1.3. Meta-affective awareness
In humans, internal states, inferences, and sensory input will produce 

Fig. 3. The Dynamic Survival Coding (DSC) model. (A) streamlined model of the DSC - A hazardous event will occur when there is an appearance or apprehension of 
a threat. The level of threat imminence, potency, and particular statistics that include novelty predictability, and volatility, will instigate the synthesis of sensory 
information, and cultural, internal, and subjective states. Together, these variables construct a defensive state that propagates a specialized defensive response or 
incites the organism to use knowledge of previous encounters with similar threats to elicit a defensive action. G-strategies will draw on cognitive systems involved in 
psychological space, memory, and learning. Further, this will cause the organism to explore internal and external environments for information which is driven by 
states of anxiety. Further, model-based RL will be imposed. The construction of the S-strategies will exploit information, promote intense emotions such as fear and 
panic, have low cognitive demand, and utilize model-free RL. Both individually, and the synthesis of, G-strategies and S-strategies can determine the defensive action. 
The defensive action results in a response to the threat which will update further defensive actions. Crucially, one hypothesis of the model is that each part of the DSC 
synergistically influences each other. They are not mutually exclusive. For instance, while representations combine to help construct the defensive state, S-strategies 
can scaffold new cognitive strategies or heuristics, and G-strategies can be fine-tuned to create specialized defensive systems. The arrow from action+control to state 
construction signifies how previous actions can influence how state construction is formed; Once the defensive strategy is successful, a safety signal will be 
broadcasted throughout the system and stored in memory; (B) the sub-processes linked to S-strategies and include lower cognition, model-free computations, 
exploitative behaviors and strategies and the emotion of fear and panic (e.g., protean escape, flight, freezing; (C) G-strategies are supported by higher levels of 
information processing and cognition, model-based computations, prospective emotions such as anxiety that promote exploration (D) S-strategies and G-strategies 
are a dynamic process across time scales including in the model decisions making and longer-term learning (e.g., transfer learning).
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a subjective and conscious representation of the threat. This results in 
meta-affective awareness or the ability to consciously reflect on one’s 
emotional state. This allows for the conscious control and evaluation of 
one’s emotional state. These emotional states will represent the in-
dividual’s introspective state of anxiety, horror, and panic. Some re-
searchers have proposed these subjective feelings of ‘fear’ states 
emanate from autonomic states (Damasio, 1999; Craig, 2002). However, 
others, such as LeDoux and Hoffman (2018), see them more as a 
modulator than the cause. In treatments of interoceptive inference, 
conscious states are often regarded as high-level hypotheses about ’the 
emotional state I am in’ that best explain both the current interoceptive 
and exteroceptive sensations (Seth and Friston, 2016; Smith et al., 
2019). The conscious state, however, may rely on explicit memory and 
act as the mnemonic system that draws connections between experi-
ences, allowing individuals to relate and compare similar events (Lau 
et al., 2022). Conscious prospection would also rely on these memory 
systems, allowing the organism to foresee danger and create a play-
ground for scenarios to avoid it (Mobbs et al., 2015). Others have sug-
gested that consciousness is advantageous to survival because it allows 
us to correct behavior (Solms, 2021). Indeed, conscious awareness of 
one’s external environment and internal state provides an advantage. It 
allows for the distillation of complex internal and external data, guiding 
behavior for flexible and creative strategizing – a process important to 
combating threats from other humans. Importantly, meta-affective 
awareness plays a continuous role from the initial state to the final ac-
tion constructions.

4.1.4. Culture and social norms

“Basic survival-related behaviors might contribute to, but are not 
isomorphic with the complex emotional categories experienced by 
humans” (Lindquist et al., (2022).

Ashley Montague (1956) proposed there are two types of nature - 
primary nature, which is inborn instincts, and secondary nature which is 
the cultural environment. Indeed, it is well-accepted that cultural ad-
aptations, which include codes of conduct and social norms, are critical 
to human survival (Plotkin, 2011). These codes and norms play a role in 
the construction of defensive states because cultural norms shape how 
humans perceive and interact with the environment. In all societies, 
cowardice is shunned, while virtues like courage and self-sacrifice are 
lauded. This is captured in the maritime codes such as "women and 
children first" or "the captain goes down with the ship" and is often the 
storyline behind many of the greatest pieces of fiction (FeldmanHall 
et al., 2016). This reverence for courage, especially in the form of 
dignified self-sacrifice, is also evident in wartime battles . In Japanese 
culture, the samurai ends his life to preserve honor or what is called 
seppuku, while self-immolation (altruistic suicide), a form of 
martyrdom, is observed across many cultures and religions. These ex-
amples suggest that human survival responses have shifted beyond 
predation to survival in, and of, social groups (Wilson and Wilson, 
2007).

While it is tempting to view cultural adaptations as being indepen-
dent of biology, Lindquist et al. (2022) proposed the Dual Inheritance 
Model to bridge this gap, explaining cultural variations, propagations of 
emotions, and biology. For example, the Dual Inheritance Model pro-
poses that emotions are embedded in neural, autonomic, and 
motor-action systems, yet the categories of each emotion, such as fear, 
anxiety, and anger are defined by culture propagated through social 
transmission. This sits with the Social Heuristics Hypothesis, where 
cultural norms become internalized, automatic (Rand et al., 2014), and 
arguably specialized. According to this hypothesis, when decisions must 
be made quickly, prosocial actions, which are fundamentally adaptive 
for group living, occur automatically whereby subjects cooperate more 
(Rand et al., 2016). When deciding whether to behave in prosocial or 
selfish ways, one must consider not only the distress of the other but the 

risk to oneself. This appraisal of danger to self is likely an underlying 
mechanism for selfish behaviors under a longer decision timeframe 
(Vieira and Olsson, 2022). Although our discussion here is brief, it is 
evident that social norms are likely to sway defensive responses and 
should be integrated into any human model of survival.

4.1.5. State constructions
State constructions form through the perpetual and dynamic in-

teractions between internal and external information states. Cognitive 
systems that support information states, representations, and S-strate-
gies and G-strategies include working memory, attention, and episodic 
memory systems. LeDoux and Brown’s notion of general networks of 
cognition and how lower-order ‘nonconscious’ units fuse with cortical 
circuits to produce the conscious or subjective experiences of emotion 
(LeDoux and Brown, 2017). Building on the details laid out in Section 2, 
Feldman-Barrett, (2006) posits these states are organized as concepts 
and construct cognition, emotion, and behavior. Each state will 
contextualize other states. Feldman-Barrett, also suggests that the con-
struction of emotion involves interoception, representations, and cul-
ture. From a Jamesian perspective, the autonomic reaction will 
influence the subjective or conscious response to danger. However, 
concepts in the form of cultural learning or context will alter the 
perception of danger (e.g., "I’m in a battle" or "I’m protecting my fam-
ily"). Like a recipe, the ingredients can be combined in various ways to 
create a different dish or in our case, a survival strategy. Therefore, in a 
dynamic system, information is constructed based on the concepts that 
they represent and form a meta-representation. We call this state con-
struction because it concerns the dynamic construction of informational 
states that correspond between internal and external milieu. In turn, the 
meta-representation of the information states dynamically interacts 
with and triggers S-strategies and G-strategies systems to construct the 
action plan. These two stages of construction are separated because at 
the moment strategic planning is based on incoming information states 
and inference, while Action Construction (as detailed in Section 5.1.12) 
reflects the formation of S-strategies and G-strategies.

Active inference formulates planning as inference under a generative 
or world model (Attias, 2003, Botvinick and Toussaint, 2012). This leads 
to the notion that any agent must infer states of affairs in the world—and 
then infer the most likely course of action to which it should commit (e. 
g., state and action constructions). In this view, choices and action se-
lection supervene inference and learning about the sensed world. As 
Feldman-Barrett (2017) states, internal models are predictive, and not 
reactive. Feldman-Barrett (2017) suggests that incoming sensory input is 
processed through Bayesian filters and these in turn construct the 
perception and drive the actions. This suggests that forward models are 
at play, where we process the world through top-down mechanisms. 
Feldman-Barrett further hypothesizes that we use our experiences, and 
our memories, to simulate and compare similar patterns that act as a 
template from which to guide actions. Importantly, if the organism is 
faced with unpredictable information, this will elicit bottom-up pro-
cesses that produce error signals or prediction errors. In this setting, 
prediction errors report the mismatch between the outcomes of a 
behavior and that predicted under the generative model, in this 
formulation, planning, and action selection rest upon minimizing the 
free energy expected following a course of action (Friston, 2010).

4.1.6. Meta-Representation, and Dimensionality Reduction
A critique of LeDoux and Pine’s and other dual-system models is that 

they separate survival circuits from the conscious experiences of fear 
(LeDoux and Pine, 2016). Yet models such as Fanselow and Pennington 
(2018) Central Fear Generator model, propose that various effectors, 
whether they be physiological, cognitive, or behavioral responses, 
converge to produce fear as an integrated response. Likewise, Herry and 
Jercog (2022) stated that meta-representations are constructed by 
combining various elements: the representations of the threat, sensory 
cues, the context, and the behavioral repertoire of the organism. For 
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S-strategies in our model, it’s crucial that meta-representations quickly 
reduce the high dimensionality of the internal and external milieu. This 
can occur through many processes, all of which must provide a value 
signal for each variable. Similar, but slower processes occur for G-stra-
tegies. For example, encountering an unfamiliar threat prompts the or-
ganism to search its internal and external states and generalize from 
previous experiences (Fig. 4).

The precise mechanism of how dimensionality reduction forms a 
meta-representation is unclear. Yet what is clear is that we experience 
the world through Gestalt lenses. Statistically, dimensionality reduction 
is performed via several methods including General Linear Models, 
Boltzmann machines, and Principal Component Analysis. However, how 
dimensionality reduction is performed biologically is unclear. From a 
neuroscientific perspective, many adhere to the idea that the brain uses 
population codes to compute internal and external representations. Here 
populations of neurons, not a single neuron, are the fundamental level of 
computation (See Saxena and Cunningham, 2019; Headley et al., 2019; 
Mobbs et al., 2020; Ebitz and Hayden, 2021). Populations, within pop-
ulations of neurons each represent some feature, yet for a unified, 
meta-representation, of the world, these neurons must undergo dimen-
sionality reduction.

In sum, meta-representations can range from simple to complex. In 
the simple case, meta-representations are the accumulation of sensory, 
somatic, abstract, and predictive states that create a unified picture of 
the world (Herry and Jercog, 2022). In other species that do not have 
conscious experiences, this is their unified perception of the inner and 
external world. In humans, the conscious experience we have of the 
world highlights certain states (e.g., my heart is beating fast) and 
appraisal and reappraisal that can modify the meta-representation 
through reconstrual and repurposing the goal set (Uusberg et al., 
2023). Therefore, by this definition, we can differentiate the 
meta-representation from the simple accumulation of information to the 
affective awareness and conscious appraisal.

4.2. Triggers

It is the resulting output of the state construction and meta- 
representation that provides the organism with a unified picture of 
danger and safety. If a threat threshold is breached, it will trigger the 
Action Construction to form G-strategies and S-strategies (Section 
4.5.2). How are triggers formed? We propose that there are several ways 
– (i) Sensory triggers or stimuli characteristics or physics that instigate a 

defensive response. Robert Hinde (1966) refers to these as ‘key stimuli’ 
or more recently what LeDoux calls “survival trigger stimuli”. These sit 
close to Konrad Lorenz’s idea of “innate releasing mechanisms” where 
the central nervous system either inhibits or activates fixed and 
instinctive action patterns based on environmental conditions.

In the case of innate programming, several examples of stimuli elicit 
a defensive response. While the types of trigger stimuli may be context 
and species-specific, some stimuli seem to produce similar behavioral 
responses across species. For example, visual systems have evolved to 
detect motion and seem particularly tuned to looming stimuli (Gibson, 
1979; Heinemans and Moita, 2022). Further, increasing sound intensity, 
a marker for looming stimuli, results in increased arousal, alertness, and 
elevated activity in both the rodent and human amygdala (Bach et al., 
2008). Another example of innate triggers is open spaces, where rodents 
exhibit innate responses like thigmotaxis (Simon et al., 1994) or 
open-arm avoidance in the elevated plus maze (Carobrez and Bertoglio, 
2005). These are just a few examples of how sensory information can 
trigger innate defensive responses. This is captured by LeDoux (2012) 
who states:

“Survival circuits detect key trigger stimuli based on innate pro-
gramming or experience” p655

Another type of trigger is what we call (ii) Prospective triggers. These 
are triggers that are instigated by future threats. Defensive responses 
according to the threat imminence continuum, during pre-encounter 
danger, where there is an increased likelihood of encountering a 
threat but not a direct threat now, the organism must be able to use 
internal models to trigger a defensive response. Indeed, past experiences 
are critical triggers. This is demonstrated by the Pavlovian condition 
where a stimulus (e.g., a beep sound) that is paired with a shock can 
result in a defensive response. In humans, PTSD symptoms can be trig-
gered by stimuli that recapitulate the traumatic experience (Dalgleish, 
2004). Importantly, it seems that internal states alone can instigate a 
trigger via memory, imagination, and prospection without changes to 
the external world. For example, we may have a threshold concerning 
the statistical estimation of danger. One example is knowing that there is 
a 5 in 10 chance of being bitten by a snake if you pick it up. If you pick it 
up 4 times, the sensory information stays the same, but your estimation 
of being bitten increases. These triggers, where thought alone can place 
the organism into a state of anxiety. In the context of defensive space 
(see Mobbs et al., 2020), a threat can be in the distant future, but elicit a 
threat response (e.g., given a big public talk). This seems particularly 
common among humans.

Fig. 4. Examples of G-strategies and S-strategies and their convergence. (A) The relationship between learning and drives, knowledge of threats (also see Fig. 3), and 
how the information is used when facing recurrent threats—where S-strategies are used—and novel threats where generalization is needed. G-strategies will draw on 
selected knowledge (e.g., see connections in green) to produce a defensive response to a novel encounter with danger. (B) We theorize that there are five de-
terminants of G-strategies and S-strategies. These include perceptual space or similarity (e.g., a tiger looks like a puma), conceptual space (e.g., visually different 
objects can be of the same category), relational space (e.g., A giraffes, might predict a peacock, which predicts a lizard that predicts a tiger) and associative learning 
(e.g., a squirrel predicts the presence of a tiger). These associations can be creatively molded by imagination for things that have never been experienced. Transfer 
learning involves the process by which learning in one domain, will facilitate or teach other learning systems. This can occur independently and through social 
interaction. G-strategies typically employ cortical systems involved in slow information processes, while recurrent threats will engage S-strategies that are quickly 
associated and responded to with fast actions. Arrows signify defensive space (i.e., time to respond).
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Finally, (iii) autonomic triggers provide an internal alarm signal. 
This is exemplified by several theories and empirical studies in neuro-
scientific and psychological studies showing that stimulation of auto-
nomic systems can trigger defensive responses (Signoret-Genest et al., 
2023). The idea that autonomic signals play a role in emotion goes back 
to William James (1884) who stated the idea bodily arousal is first 
experienced and the emotion follows, for example: 

“We feel sorry because we cry, angry because we strike, afraid 
because we tremble” (James 1884: 189–190).

The role of bodily arousal in the emotional state was elaborated on 
by Schachter and Singer, who proposed the two-factor theory of 
emotion. Here the emotion one feels is determined by the cognitive 
interpretation of the bodily state. They hypothesized that when the 
subjects feel a bodily state of arousal (e.g., increased heart rate due to 
injection of epinephrine) for which they have no explanation, they will 
look for explanations for the arousal and thereby label the emotion with 
the best explanation. As Schachter and Singer state: 

“… Subjects who had no explanation for the bodily state thus pro-
duced, gave behavioral and self-report indications that they had been 
readily manipulable into the disparate feeling states of euphoria and 
anger” p396.

Later research on misattribution of arousal (e.g., Dutton and Aron, 
1974), and contextual effects on the perception of facial emotion (Mobbs 
et al., 2007) to support the two-factor theory. And lay the foundation for 
modern theories of emotional construction (Feldman-Barrett, 2017).

In the context of the DSC framework, there are several important 
things to consider (i) the meta-representation should integrate these 
triggers with context, safety levels, and history with the threat. There-
fore, a threat may not trigger a response if the organism is in a state of 
safety (e.g., seeing a bear through a car window). (ii) Like James Gib-
son’s notion of affordances (Gibson, 1966), the DSC proposes that there 
is a complementary relationship between the organism and the envi-
ronment. Affordances are what the ecology offers the organism in terms 
of protection or danger or what possibilities the environment offers or 
affords. Stimuli in the environment are perceived by their survival value. 
Finally, (iii) construction of the defensive action state depends on the 
context, affordances in the world, and autonomic and psychological 
state. If the internal states result in threat signals, an action will be 
constructed based on the dimensionality of experience resulting in 
G-strategies and S-strategies.

4.3. Action Construction: G-strategies and S-strategies and Related Sub- 
States

The question of how psychological states, including emotion and 
defensive states, are constructed is a topic of intense debate within 
psychology and neuroscience (see Mobbs et al., 2019). We hypothesize 
that the state constructions and meta-representation dynamically 
interact to construct the survival actions and their related sub-states 
associated with G-strategies and S-strategies. As discussed in Section 
3.1, the most notable, Feldman-Barrett’s theory of constructed emotion 
has proposed that defensive states are constructed dynamically at the 
moment, which in turn directs motor and visceral systems (Barrett, 
2006; Barrett et al., 2016; Barrett and Simmons, 2015). However, we 
suggest that this construction depends on several other factors most 
notably the time pressure (or defensive space Section 5.2.1) and un-
certainty. Here, one would expect model-free reactive systems that 
produce fast, often innate, defensive responses as implemented in 
S-strategies. Most evident during the interaction with novel or uncertain 
threats is the construction of G-strategies, which would search for a 
larger psychological space (Section 5.2) to create a defensive plan 
(Fig. 4).

5. Levels of ecological dimensionality: the roles of G-strategies 
and S-strategies

In the case of multidimensional ecologies, organisms will evolve 
various strategies, including changes in their physical phenotypes, 
underscoring the idea that ‘form follows function’. Consider the differ-
ence in S-strategies vs. G-strategies camouflage strategies: the consistent 
stripe pattern of tigers versus the adaptable camouflages of chameleons 
or octopuses. Presumably, the latter is only useful when they need to 
disguise themselves in different environments, and it comes with an 
energy cost. Therefore, natural selection will in tandem evolve physical 
and behavioral phenotypes that are defined under the rubric of G-stra-
tegies and S-strategies.

Arguably, human evolution has focused on G-strategies. As high-
lighted by theories like the Cognitive trade-off hypothesis (Matsuzawa, 
2009), humans have enhanced the adaptability of their brains to process 
information, make decisions, and generalize both across and within 
environments. Indeed, Cantlon and Piantodosi (2024) have recently 
proposed that the unique intelligence that is observed in humans comes 
from the expansion in information capacity.

Even though the human brain boasts remarkable flexibility in pro-
specting and adapting to complex environments, evidence suggests that 
defensive optimization occurs more gradually. For instance, the opti-
mization of defensive weapons has been a steady process, evolving over 
generations in response to salient features of the environment rather 
than undergoing abrupt change (Derex et al., 2019). Having a brain 
attuned to ecological complexity and frequent change provides a major 
survival advantage. Such adaptation can be accomplished by internally 
replaying previous experiences, using them to construct relational 
structures, and predicting potential threats in unfamiliar environments 
(Linson et al., 2020). Among other reasons, this cognitive prowess would 
have been a major advantage for nomadic hunter-gatherers traversing 
varied landscapes with new dangers.

5.1. G-strategies and S-strategies result in exploration, curiosity, and 
exploitation of the environment

What are the behavioral manifestations of G-strategies and S-stra-
tegies? Futuyma and Moreno, (1988) have suggested that:

“The probability of specialization increases with the decrease in the 
cost of search” (p211).

Under safe conditions, G-strategies will sometimes result in 
information-seeking behaviors. This is evident in rodents that, when 
placed in a location (e.g., a new cage), exhibit exploratory movements. 
Such exploration in novel environments provides vital information 
about potential threats, both immediate and prospective. From a moti-
vational perspective, G-strategies essentially act as a long-term strategy 
that promotes curiosity. According to novelty-based theories, curiosity 
promotes information-seeking and is therefore intrinsically rewarding 
(Kang et al., 2009;Barto et al., 2013; Berlyne, 1950; Friston et al., 2017; 
Oudeyer and Kaplan, 2007; Schmidhuber, 2006, 2010; Schwartenbeck 
et al., 2019; Still and Precup, 2012; Vigorito and Barto, 2010). Research 
in humans and other animals has supported the role of the dopaminergic 
system in underpinning curiosity and information-seeking behaviors 
(Daw et al., 2006; Schwartenbeck et al., 2013; Schwartenbeck et al., 
2015a; Schwartenbeck et al., 2015b).

Explorative behaviors should peak when information is needed for 
current or future survival (Bromberg-Martin and Hikosaka, 2009). 
Notably, uncertainty has been linked to anxiety, suggesting that anxious 
individuals may exhibit higher explorative information-seeking behav-
iors. Past studies in rodents suggest that both high and low fear states 
correlate with reduced exploration rates. Conversely, an intermediate 
level of threat increases exploration, suggesting a U-shaped behavioral 
relationship between fear and exploration (Lester, 1968). In humans, 
information seeking is increased when avoidance or escape routes are 
not available (Restrepo-Castro et al., 2023). Further, the ability to 
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adaptively seek out information may depend on contextual factors that 
can increase or decrease survival in individuals with anxiety. Char-
pentier and colleagues (2022) have shown that information-seeking is 
valence-dependent, with information associated with reward fostering a 
heightened information-seeking behavior than information associated 
with potential loss. Therefore, information-seeking would benefit 
anxious individuals by increasing knowledge and reducing uncertainty. 
Further, anxiety reduces model-based control in contexts that involve 
avoiding negative outcomes or seeking out protection to mitigate harm 
(Tashjian et al., 2022).

Conversely, S-strategies would rely on the exploitation of knowledge 
(Fig. 3A), the use of habitual behavior, and model-free computations. 
Rooted in S-strategies are habitual behaviors that result in energy con-
servation, rapid and accurate defensive responses, and consistent out-
comes. Intriguingly, the automaticity of information-seeking in the face 
of uncertainty can be viewed as a fairly instinctive and hard-wire 
response. Yet, it serves a pivotal role within the broader framework of 
flexible, G-strategies. This underscores the idea that S-strategies and G- 
strategies are not distinct constructs but rather form a fluid continuum, 
each dynamically complementing the other.

It is important to state that anxiety is a visceral and cognitive state 
that is supported by generalization systems including prospection. 
Speculating, exploration can be behavioral (e.g., information seeking 
and curiosity), and internal (e.g., searching for connections). Therefore, 
the exploratory, information-seeking state is part of the G-strategies but 
is different from how the brain organizes information (e.g., abstract 
structures).

6. Components of G-strategies and S-strategies

We propose that the activation of S-strategies and G-strategies hinges 
on several key processes, which we categorize into distinct domains (see 
Fig. 2C). These processes are optimized through their interactions. 
Further, uncertainty within any of these spaces will drive the system to 
allocate resources towards cognitive processes (e.g., vigilance, memory 
search) or inefficient avoidance, where the organism flees upon recog-
nizing a potential threat. These processes increase efficiency by applying 
previous knowledge to new or recurring threats (Fig. 4).

7. Defensive Space

Defensive space is a determinant of S-strategies and G-strategies. 
Defensive space reflects the amount of time or space available to an 
organism to determine the best defensive action. The longer the time the 
organism is given to decide, the larger the defensive space (or knowl-
edge. Fig. 4B) that can be searched (Mobbs et al., 2020; Qi et al., 2018). 
This can be advantageous because a larger amount of time allows for a 
more detailed search through memory and imagination to strategize and 
plan a course of action. With increasing time, the organism can draw on 
experiences, simulate potential outcomes, and choose the best option. 
Likewise, defensive space can be reduced when other tasks impinge on 
the time available to plan defensive actions, a notion supported by the 
finding that subjects show less reliance on model-based planning when 
performing a second task simultaneously (Otto et al., 2013). One 
downside of a larger defensive space is what we call the “time--
uncertainty principle”: as time increases, so does the defensive space and 
the variance in, for example, the predator’s attack possibilities and the 
prey’s number of behavioral options. If there is no clear solution to the 
decision problem at hand, this causes conflict and uncertainty in the 
defensive circuits (Mobbs et al., 2020). Others have shown that rumi-
nation can impair faster reinforcement learning (Hitchcock et al., 2022), 
suggesting that such cognitively demanding processes may impair 
S-strategies (e.g., reactive escape; Qi et al., 2018).

To combat fast-attacking threats that allow little time for a deliber-
ative response, an organism needs a specialized, reactive system that can 
coordinate a quick response (Mobbs et al., 2020). Under such conditions, 

deliberation can prove fatal. S-strategies therefore provide an advantage 
when rapid responses are essential – for instance, during unexpected or 
imminent threats. This will result in the elicitation of learned action 
plans or fast innate defensive responses like freezing or flight. These 
reflexive responses are observed across the animal world and by all 
accounts are successful. Yet, predators will ultimately learn to overcome 
these defensive behaviors. In addition, a mismatch between the preda-
tor’s behavior and the defensive strategy devised for it can lead to the 
failure of the reflexive response (and prediction error). This underscores 
the utility of S-strategies, evolving from a G-strategies input, to devise 
novel and unpredictable defensive strategies against predators. There-
fore, we speculate that the dynamic interaction between S-strategies, 
G-strategies, and other systems in the DSC encapsulates the adoption of 
adaptive survival behaviors.

7.1. Defensive emotions

The genesis of emotions such as anxiety and fear are formed through 
state constructions, yet triggered through action construction. The 
resultant emotion depends upon several variables including the context, 
moods, and the autonomic nervous system. For example, increased heart 
rate and autonomic reactivity can be elicited by the sensory states in the 
detection of a threat in the environment. Further, they can be modulated 
by meta-affective awareness where one can consciously think about 
past, present, and future threats. This information is accumulated to 
form a meta-representation, which if a threat threshold is reached, will 
trigger action construction. According to the DSC framework, emotions 
like fear and anxiety are actions accumulated based on state represen-
tations. The resultant emotion is therefore a key part of the S-strategies 
and G-strategies. Anxiety drives the organism to search internal envi-
ronments to estimate the best action and explore the external world to 
increase knowledge (e.g., thigmotaxis). S-strategies will elicit reactive 
emotions such as fear and panic, which behavior manifests as rapid 
protean escape and uncoordinated movement. Importantly, the DSC 
framework sees emotion as a critical part of the survival strategy, 
invigorating the organism to quickly react, increase vigilance, or explore 
internal memory systems.

7.2. Psychological space: perceptual and cognitive maps

Shepard’s ‘law of generalizability’ proposes the idea of a ‘psycho-
logical space’. According to this view, every stimulus creates a metric 
space, and the distance between one stimulus and related stimuli de-
termines the probability of generalization (Shepard, 1987). That is, the 
probability of a learned response generalizing from one stimulus to 
another depends on the perceptual and cognitive similarity between 
them. Shepard states: 

“We generalize from one situation to another not because we cannot 
tell the difference between the two situations but because we judge 
that they are likely to belong to a set of situations having the same 
consequence”. pp237 Roger Shepard, (1987).

Shepard points out that the probability of generalization decays with 
distance, but what determines these distances? Examples of determining 
psychological distance include Euclidean, Minkowski metrics, and the 
Markov tree, although their application to abstract psychological con-
cepts is challenging. As we discuss below, we use the term psychological 
space to capture G-strategies across perceptual, conceptual, and rela-
tional spaces (Fig. 3B).

7.3. Perceptual space

In nature, the roar of a lion is similar to the roar of a tiger, and the 
sight of a rattlesnake is similar to a copperhead. Such similarities in 
sensory properties allow for generalizations. For instance, a rabbit might 
identify a fox as a threat, but it would likely recognize other similar- 
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sized four-legged creatures, such as a coyote or bobcat, as potential 
dangers too. Perceptual space can be visualized geometrically, with at-
tributes like size and color as dimensions. Thus, a fox and a coyote have a 
closer perceptual space than a fox and a sparrow. In this context, S- 
strategies would result from having a specific behavioral response for 
each type of predator, while G-strategies would use a similar defensive 
response to the fox and the coyote. It is worth noting that the ecological 
evidence for perceptual space comes from Batesian mimicry and 
Pavlovian generalization. Batesian mimicry is where a non-harmful 
species mimics a harmful species, as seen with the Californian Moun-
tain King Snake adopting visual patterns similar to the poisonous 
Eastern Coral Snakes.

Meanwhile, Pavlovian generalization allows for simpler generaliza-
tion based on similar stimuli, aligning it with perceptual space (Lashley 
and Wade, 1946). Another example is one study in Fathead Minnows 
showed that when they are trained to recognize the odor of a natural 
predator – a lake trout – they can generalize their defensive response to 
phylogenetically closer species of trout. For example, the Brook Trout, 
which is phylogenetically closer to the lake trout resulted in higher in-
tensity of antipredator responses as compared to a Rainbow Trout. 
However, more distant trout in the family tree did not elicit such 
defensive responses (Ferrari et al., 2007). This study supports the idea 
that G-strategies extend across the senses and are species-specific.

7.4. Conceptual space

If perceptual space is guided by sensory similarity, then one must 
also consider how stimuli are associated by their categorical inclusion. 
For example, both Chihuahuas and English Setters fall under the “dogs” 
category, which further belongs to broader classifications like sporting 
dogs, herding dogs, or the genus of Canis. Object categories, as defined 
by both supervised neural networks trained to discriminate between 
categories and neural networks trained on linguistic data, are repre-
sented in the inferior temporal cortex (Khaligh-Razavi and Kriegeskorte, 
2014). This is in line with theoretical work suggesting that this region 
functions as a modality-independent hub for semantic knowledge 
(Carlson et al., 2014), indicating a dedicated system for conceptual 
space representation that facilitates category-based judgments. It’s also 
evident that conceptual and perceptual spaces sometimes blur. Research 
shows that the brain represents abstract, semantic object properties 
grounded in perceptual information, such as the shape and size of a bird, 
in a grid-like neural code, using them for G-strategies similar to spatial 
information (Lambon-Ralph et al., 2017; Constantinescu, et al., 2016).

While it is true that perceptual space captures how physically similar 
stimuli are clustered, humans can conceptually categorize stimuli 
through processes such as induction (Dunsmoor and Murphy, 2014). 
Conceptual space, as defined here, concerns how stimuli are conceptu-
ally categorized. For example, how a leaf is linked to a tree, or similar to 
our example, how a house cat is in the same category as a lion. One study 
by Dunsmoor and colleagues conducted a simple memory experiment, 
where they showed that conditioning on a particular stimulus enhances 
retroactive memories for related stimuli (Dunsmoor et al., 2015). This 
shows a link between associative learning where inconsequential in-
formation is reclassified as relevant. This interplay between associative 
learning and conceptual categorization suggests that high-order pro-
cesses, such as concepts and inductive reasoning, underpin even what 
are considered low-level processes. This extends our understanding 
beyond mere perceptual similarities, shedding light on the complex 
mechanisms humans use to generalize (Dunsmoor and Murphy, 2014).

7.5. Relational space

As discussed in Section 2.1, the abstract relational structures (e.g., 
Cognitive maps), or for consistency in our terminology, “relational 
space”, depends upon relations between stimuli. These structures 
potentially utilize the same neural systems that facilitate flexible 

avoidance behavior using abstract cognitive maps of the organism’s 
environment. A prime example is the hippocampus-entorhinal cortex. 
While it’s pivotal in representing abstract relational structure, it’s also 
involved in perceptually-guided fear generalization (Webler et al., 
2021). Grid-like neural representations of relational structure are also 
implicated in the representation of abstract concepts such as the shape of 
birds (Constantinescu et al., 2016) - concepts that seem analogous to 
those guiding avoidance based upon perceptual distance. However, 
when we speak of “psychological space”, we primarily refer to concepts 
whose similarity can be automatically and immediately judged without 
abstraction, typically focused on perceptual attributes such as shape, 
size, or color, rather than more complex abstract relations.

7.6. Imagination and prospection

David Hume stated, “Nothing is more free than the imagination of 
man” (p47). Indeed, in the context of defensive space, imagination al-
lows one to volitionally and creatively draw on previous experiences (i. 
e., episodic memory) and prospectively apply them to new or future 
contexts (Hassabis, et al., 2007; Suddendorf and Corballis, 2007; Mobbs 
et al., 2015). Rather than a mere recapitulation of past events, imagi-
nation facilitates a malleable and inventive reshaping of these mem-
ories. This offers the capacity to forecast diverse scenarios, even those 
never encountered before. This is a critical aspect of G-strategies and 
survival in novel and high-dimensional contexts but flexibly combines 
associative learning, perceptual space, conceptual space, and relational 
space. Doing so, allows one to either preemptively alter behaviors in 
anticipation of danger (e.g., avoidance) or, upon facing a danger, pre-
pare a planned defensive action. Moreover, imagination and prospection 
may also use episodic RL, where memories are used to estimate the value 
of actions (Botvinick et al., 2019).

7.7. Underlying learning and transfer learning

When encountering threats, rapid adjustments are imperative, call-
ing for plasticity in defensive decision-making. Some of these adjust-
ments in S-strategies can become habitual (Model-Free RL), while others 
are more contemplative (Model-Based RL). While RL provides the 
building blocks for most forms of generalization, it does not capture 
every facet, especially inferential associations. Pavlovian fear condi-
tioning is extremely powerful as it allows the organism to learn positive 
or negative associations about completely separate stimuli. While 
complex associations can be made through associative learning (e.g., 
Occasion setting; Zbozinek et al., 2022) in its basic form, associative 
learning does not provide a good explanation for associations that occur 
in humans, including prospection and imagination. However, recent 
work has shown how learning and extinction can occur via imagination 
(Reddan, Wager, and Schiller, 2018) and the potential for vicarious 
learning and advanced cognition to form associations between under-
lying categories (Mobbs et al., 2015). From the perspective of active 
inference and learning, one important kind of generalization rests upon 
structural learning (Gershman and Niv, 2010; Ghahramani and Jordan, 
1997; Smith et al., 2020; Tenenbaum et al., 2011); namely, getting the 
right structure in generative or internal models that ’carve nature at its 
joints’. This is an important aspect of transfer learning and G-strategies, 
which can be framed in terms of Bayesian model selection during 
introspection, sleep, neurodevelopment, and, indeed, natural selection 
(Campbell, 2016; Frank, 2012; Friston et al., 2017; Vanchurin et al., 
2022).

8. Conclusions

In this article, we have stated that predictable and recurrent 
ecological threat fosters the evolution of narrow, S-strategies. In 
contrast, complex, multidimensional environments will drive the 
development of G-strategies that not only generalize but also simulate, 
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construct, and predict danger. Together, this spectrum reflects defensive 
responses that can combat a large variety of threats across a multitude of 
environments. Further, the DSC model provides a possible solution to 
dichotomous theories of emotion by synthesizing hard-wired defensive 
models (e.g., Panksepp’s FEAR model and LeDoux’s survival circuits) 
with higher-order and construction theories (e.g., Barrett, 2006; LeDoux 
and Pine, 2016). The DSC proposes several testable hypotheses in 
humans and other animals: 

1. G-strategies promote exploratory behaviors driven by curiosity or 
information-seeking and can reduce entropy and uncertainty. S- 
strategies will utilize exploitative habitual behaviors. This should be 
tested using novel methods where movement can be measured (e.g., 
computational ethology; Mobbs et al., 2021).

2. Defensive space, or the amount of time the organism has to make 
value and action decisions, will determine the strategy. For example, 
if the organism has little time, the S-strategies will take control and 
determine the action to be selected. S-strategies elicit urges and 
reactive and habitual model-free behaviors such as freezing or flight. 
Importantly, given sufficient time, reactive urges, or the desire to 
avoid the situation, are [pre]consciously perceived and controlled (e. 
g., inhibition of flight). This process may take the form of urgency- 
gating (Cisek, Puskas, and El-Murr, 2009). Therefore, experiments 
should manipulate the time that subjects can deliberatevoid or 
escape from threat (e.g. Qi et al., 2018; Qi et al., 2024).

3. At the extreme, G-strategies cast a wide net to draw on high- 
dimensional representations or merge several representations to 
produce what it believes to be the best defensive response. This 
process includes the construction of high-dimensional cognitive, af-
fective, and behavioral states that, upon repetition, become low- 
dimensional and specialized. Thus, researchers should aim to alter 
the complexity of the threats to examine the switch from 
hippocampal-prefrontal systems to subcortical and motor systems.

4. Humans face complex social dangers that are based on abstract in-
formation such as culture, social, and language embedded in cogni-
tion systems (See Ortony, Clore, and Collins, 1988). Based on the 
state construction, G-strategies would implement the appropriate 
defensive response that could include verbal strategies to calm the 
agent (e.g., reasoning) or shouting for help.

5. Transfer learning supports the claim of the efficient ‘reuse’ and the 
economical cross-fertilization of abstract, relational, and perceptual 
space when generalizing across threats. Creating experiments that 
examine similar attack strategies should be about to see how to 
learning transfers in the brain. Here one could use modern statistical 
approaches such as representational similarity analyses 
(Kriegeskorte et al, 2008).

Although briefly discussed, one question not extensively addressed 
here is how the DSC is instantiated in the central nervous system (Price, 
2005; Price and Drevets, 2010). Given the multidimensional nature of 
the real world, complex representations may be created and maintained 
in populations of neurons (Headley et al., 2019; Mobbs et al., 2019; 
Mobbs et al., 2020; Ebitz and Hayden, 2021). For example, populations 
of neurons, store similar representations and compare and combine 
them across modalities (e.g., vision and smell). Further, abstract repre-
sentations of stimuli can be creatively manipulated to form, for example, 
dynamic and novel representations. Abstract forms of safety (e.g., my 
confidence in my abilities to escape a predator) may also be represented 
in these codes (Tashjian et al., 2021). The conjunction of these repre-
sentations along with repeated exposure to similar experiences will 
result in S-strategies. One goal of neuroscience should be to understand 
how neural populations shift from high to low dimensions to elicit the 
most adaptive defensive response.

Acknowledgments

DM is supported by National Institute of Mental Health grants 
R01MH133730-01, 2P50MH094258, and Templeton Foundation grant 
TWCF0366. KF is supported by funding for the Wellcome Centre for 
Human Neuroimaging (Ref: 205103/Z/16/Z), a Canada-UK Artificial 
Intelligence Initiative (Ref: ES/T01279X/1), and the European Union’s 
Horizon 2020 Framework Program for Research and Innovation under 
the Specific Grant Agreement No. 945539 (Human Brain Project SGA3). 
TW is supported by a Wellcome Trust Career Development Award 
(225945/Z/22/Z). DBH is supported by the grant R01NS123396. We 
would like to thank Zachary Diamandis, Mac Thurston, and Ketika Garg. 
Correspondence concerning this article should be addressed to Dean 
Mobbs, Department of Humanities and Social Sciences California Insti-
tute of Technology, 1200 E California Blvd, HSS 228–77, Pasadena, 
California 91125, USA; dmobbs@caltech.edu.

References

Abraham, W., 2008. Metaplasticity: tuning synapses and networks for plasticity. Nat. 
Rev. Neurosci. 9, 387.

Adams, C.D., 1982. Variations in the sensitivity of instrumental responding to reinforcer 
devaluation. Q J. Exp. Psychol. Sect. B 34, 77–98.

Anderson, M.L., 2010. Neural reuse: A fundamental organizational principle of the brain. 
Behav. Brain Sci. 33, 245–313.

Anderson, D.J., 2016. Circuit modules linking internal states and social behavior in flies 
and mice. Nat. Rev. Neurosci. 17 (11), 692–704.

Attias, H., 2003. Planning by probabilistic inference. Proc. 9th Int. Workshop Artif. Intell. 
Stat.

Bach, D.R., Dayan, P., 2017. Algorithms for survival: a comparative perspective on 
emotions. Nat Rev Neurosci 18 (5), 311–319. May. 

Barrett, L.F., 2006. Solving the emotion paradox: categorization and the experience of 
emotion. Personal. Soc. Psychol. Rev.: Off. J. Soc. Personal. Soc. Psychol., Inc. 10, 
20–46.

Barrett, L.F., Quigley, K.S., Hamilton, P., 2016. An active inference theory of allostasis 
and interoception in depression. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 371, 
20160011.

Barrett, L.F., Simmons, W.K., 2015. Interoceptive predictions in the brain. Nat. Rev. 
Neurosci. 16, 419–429.

9 Barsbai, T., Lukas, D., Pondorfer, A. (2021) Local convergence of behavior across 
species. Science, Vol 371, Issue 6526, pp. 292-295.

Barto, A., Mirolli, M., Baldassarre, G., 2013. Novelty or surprise? Front Psychol. 4, 907.
Berlyne, D.E., 1950. Novelty and curiosity as determinants of explanatory behaviour. 

British Journal of Psychology-General Section, 41, 68–80.
Blanchard, R.J., Blanchard, D.C., 1989. Attack and defense in rodents as 

ethoexperimental models for the study of emotion. Prog Neuropsychopharmacol Biol 
Psychiatry 13. Suppl:S3-14. 

Botvinick, M., Ritter, S., Wang, J.X., Kurth-Nelson, Z., Blundell, C., Hassabis, D., 2019. 
Reinforcement learning, fast and slow. Trends Cogn. Sci. 23 (5), 408–422.

Botvinick, M., Toussaint, M., 2012. Planning as inference. Trends Cogn. Sci. 16, 485–488.
Brechbühl, J., Moine, F., Klaey, M., Nenniger-Tosato, M., Hurni, N., Sporkert, F., 

Giroud, C., Broillet, M.C., 2013. Mouse alarm pheromone shares structural similarity 
with predator scents. Proc. Natl. Acad. Sci. USA 110 (12), 4762–4767.

Bromberg-Martin, E.S., Hikosaka, O., 2009. Midbrain dopamine neurons signal 
preference for advance information about upcoming rewards. Neuron 63 (1), 
119–126.

Burdakov, D., Peleg-Raibstein, D., 2020. The hypothalamus as a primary coordinator of 
memory updating. Physiol. Behav. 223, 112988.

Burnett, C.J., Li, C., Webber, E., Tsaousidou, E., Xue, S.Y., Brüning, J.C., Krashes, M.J., 
2016. Hunger-driven motivational state competition. Neuron 92 (1), 187–201.

Campbell, J.O., 2016. Universal darwinism as a process of bayesian inference. Front. 
Syst. Neurosci. 10, 49.

Cantlon, J.F., Piantadosi, S.T., 2024. Uniquely human intelligence arose from expanded 
information capacity. Nat. Rev. Psychol. 3, 275–293.

Carlson, T.A., Simmons, R.A., Kriegeskorte, N., Slevc, L.R., 2014. The emergence of 
semantic meaning in the ventral temporal pathway. J. Cogn. Neurosci. 26 (1), 
120–131.

Carobrez, A.P., Bertoglio, L.J., 2005. Ethological and temporal analyses of anxiety-like 
behavior: the elevated plus-maze model 20 years on. Neurosci. Biobehav Rev. 29 (8), 
1193–1205.

Carthey, A.J.R., Bucknall, M.P., Wierucka, K., et al., 2017. Novel predators emit novel 
cues: a mechanism for prey naivety towards alien predators. Sci. Rep. 7, 16377.

Charpentier, C.J., Cogliati Dezza, I., Vellani, V., et al., 2022. Anxiety increases 
information-seeking in response to large changes. Sci. Rep. 12, 7385. https://doi. 
org/10.1038/s41598-022-10813-9.

Cisek, P., Puskas, G.A., El-Murr, S., 2009. Decisions in changing conditions: the urgency- 
gating model. J. Neurosci. 29 (37), 11560–11571.

Constantinescu, A.O., O’Reilly, X., Behrens, T.E.J., 2016. Organizing conceptual 
knowledge in humans with a gridlike code. Science 352, 1464–1468.

D. Mobbs et al.                                                                                                                                                                                                                                  Neuroscience and Biobehavioral Reviews 167 (2024) 105924 

14 

http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref1
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref1
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref2
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref2
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref3
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref3
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref4
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref4
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref5
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref5
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref6
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref6
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref7
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref7
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref7
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref8
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref8
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref8
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref9
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref9
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref10
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref11
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref11
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref12
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref12
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref12
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref13
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref13
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref14
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref15
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref15
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref15
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref16
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref16
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref16
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref17
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref17
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref18
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref18
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref19
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref19
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref20
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref20
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref21
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref21
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref21
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref22
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref22
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref22
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref23
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref23
https://doi.org/10.1038/s41598-022-10813-9
https://doi.org/10.1038/s41598-022-10813-9
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref25
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref25
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref26
http://refhub.elsevier.com/S0149-7634(24)00393-2/sbref26


Craig, A.D., 2002. How do you feel? Interoception: the sense of the physiological 
condition of the body. Nat. Rev. Neurosci. 3, 655–666.

Dalgleish, T., 2004. Cognitive approaches to posttraumatic stress disorder: the evolution 
of multirepresentational theorizing. Psychol. Bull. 130 (2), 228–260.

Damasio, A.R., 1999. The Feeling of What Happens: Body and Emotion in the Making of 
Consciousness. Harcourt Brace, New York. 

Darwin, C. (1859). On the origin of species by means of natural selection, or the 
preservation of favoured races in the struggle for life. London: Murray.

Daw, N.D., Niv, Y., Dayan, P., 2005. Uncertainty-based competition between prefrontal 
and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8 (12), 
1704–1711.

Daw, N.D., O’Doherty, J.P., Dayan, P., Seymour, B., Dolan, R.J., 2006. Cortical substrates 
for exploratory decisions in humans. Nature 441 (7095), 876–879.

Derex, M., Bonnefon, J.F., Boyd, R., Mesoudi, A., 2019. Causal understanding is not 
necessary for the improvement of culturally evolving technology. Nat. Hum. Behav. 
3, 446–452.

Dias, B.G., Ressler, K.J., 2014. Parental olfactory experience influences behavior and 
neural structure in subsequent generations. Nat. Neurosci. 17 (1), 89–96.

Drabeck, D.H., Dean, A.M., Jansa, S.A., 2015. Why the honey badger don’t care: 
Convergent evolution of venom-targeted nicotinic acetylcholine receptors in 
mammals that survive venomous snake bites. Toxicon 99, 68–72.

Dunsmoor, J.E., Murphy, G.L., 2014. Stimulus typicality determines how broadly fear is 
generalized. Psychol. Sci. 25 (9), 1816–1821.

Dunsmoor, J.E., Murty, V.P., Davachi, L., Phelps, E.A., 2015. Emotional learning 
selectively and retroactively strengthens memories for related events. Nature 520 
(7547), 345–348.

Ebitz, R.B., Hayden, B.Y., 2021. The population doctrine in cognitive neuroscience. 
Neuron 109 (19), 3055–3068.

Engelhard, B., Finkelstein, J., Cox, J., et al., 2019. Specialized coding of sensory, motor 
and cognitive variables in VTA dopamine neurons. Nature 570, 509–513.

Fadok, J., Krabbe, S., Markovic, M., et al., 2017. A competitive inhibitory circuit for 
selection of active and passive fear responses. Nature 542, 96–100.

Fanselow, M.S., Hoffman, A.N., 2024. Fear, defense, and emotion: A neuroethological 
understanding of the negative valence research domain criteria. Am Psychol 79 (5), 
725–734. Jul-Aug. 

Fanselow, M.S., Lester, L.S., 1988. A functional behavioristic approach to aversively 
motivated behavior: predatory imminence as a determinant of the topography of 
defensive behavior. In: Beecher, R.C.B.M.D., Hillsdale, N.J. (Eds.), Evolution and 
Learning. Erlbaum, pp. 185–211.

Fanselow, M.S., Pennington, Z.T., 2018. A return to the psychiatric dark ages with a two- 
system framework for fear. Behav. Res Ther. 100, 24–29.
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