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SUMMARY

In social environments, survival can depend upon inferring and adapting to other agents’ goal-directed
behavior. However, it remains unclear how humans achieve this, despite the fact that many decisions
must account for complex, dynamic agents acting according to their own goals. Here, we use a predator-
prey task (total n = 510) to demonstrate that humans exploit an interactive cognitive map of the social
environment to infer other agents’ preferences and simulate their future behavior, providing for flexible,
generalizable responses. A model-based inverse reinforcement learning model explained participants’
inferences about threatening agents’ preferences, with participants using this inferred knowledge to enact
generalizable, model-based behavioral responses. Using tree-search planning models, we then found that
behavior was best explained by a planning algorithm that incorporated simulations of the threat’s
goal-directed behavior. Our results indicate that humans use a cognitive map to determine other agents’
preferences, facilitating generalized predictions of their behavior and effective responses.

INTRODUCTION

Our ability to predict and adapt to others’ behavior is one that we

use regularly and often seemingly automatically.1,3 One salient

example of this behavior is threat avoidance; in the natural world,

organisms proactively infer predators’ goals and predict their

movements soas tomakebetter avoidancedecisions.2Rudimen-

tary aspects of these abilities are observed across species,where

animals will learn the behaviors of their predators and act accord-

ing to this information to avoid predation.4 Yet, humansare partic-

ularly astute at inferringmental states and predicting behaviors of

complex agents,5 whether threatening or not, an ability that is

likely critical in modern society, where many everyday actions

depend upon interactions with other humans. Despite the enor-

mous survival advantage of these abilities, the complex computa-

tions that enable us to simulate a threat’s goal-directed locomo-

tion and respond appropriately remain poorly understood. Here,

we show that humans’ ability to avoid dynamic threats depends

upon an internal model of the shared environment.

More generally, the ability to infer others’ goals and respond

to their actions is well established.1,3 However, at a computa-

tional level it is a complex undertaking, and achieving human-

level action prediction remains a significant challenge for artifi-

cial intelligence.6 Multiple systems are likely involved; while

humans are adept at inferring others’ goals and predicting their

resulting actions,5 it has also been shown that human partici-

pants adaptively switch between goal inference and computa-

tionally simpler strategies during observational learning

according to the expected success of each strategy,7 suggest-

ing that both approaches may be used in different situations

depending on which performs best. Computational modeling

has further revealed that human goal inference is supported

by model-based planning processes8 (i.e., planning that uses

explicit consideration of long-term outcomes based on an inter-

nal model of the world, as opposed to relying on habitual trial-

and-error learning), indicating that this process relies upon an

internal model of the social environment. In addition to predict-

ing others’ behavior, humans are also able to flexibly adapt

their own behavior to account for these predictions. Computa-

tional modeling of simple social games has demonstrated that

relatively complex decisions that account for others’ behavior

can be recapitulated by planning algorithms,9–11 suggesting

that planning processes can be adapted to incorporate predic-

tions about other agents’ behavior as well as our own.12,13

Together, this work indicates that, while this type of behavior

is automatic and intuitive,3 it is underpinned by complex

computational mechanisms and relies on an accurate internal

model of the social environment.
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Figure 1. Overview and task design

(A) Overview of proposed avoidancemodel. When facedwith danger posed by a threatening agent, a human actor first infers the agent’s preferences before using

these to predict its behavior and plan actions that will avoid an encounter with the threat.

(B) Task timeline, indicating the different stages of the task across the three experiments.

(C) Illustrative screenshot from the task. Participants controlled a robot exploring an environment containing two features (red ground and trees), alongside a blob

monster that would eat the robot if the two occupied the same cell on the hexagonal grid.

(D) In experiment 1, participants were asked to predict the threatening agent’s moves by selecting cells that they expected the agent to move to.

(E) To assess how participants learned about the agent’s preferences, in experiment 1 they were asked to rate the agent’s likes and dislikes using a 9-point scale

at the end of each game.

(F) In other conditions (experiment 2, experiment 3, predictable and unpredictable conditions), participants were informed of the agent’s preferences prior to the

game starting.

(legend continued on next page)
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Predator-prey interactions provide an especially acute test of

our ability to predict other agents’ actions given that suboptimal

predictions may have immediately deleterious consequences.

However, little is known about how the complex computational

mechanisms that enable us to understand and predict social

agents support avoidance. Avoidance tasks typically involve

either static threats (e.g., place aversion) or simple mobile pred-

ators. In contrast, real-world environments feature dynamic so-

cial agents with their own goals and behavioral strategies, where

these social prediction mechanisms will naturally assume

greater importance. In addition, research on the computational

underpinnings of social inference have typically used highly arti-

ficial tasks or games, and it is unclear how thesemechanisms are

deployed in naturalistic environments that better reflect the

complexity of the real world.

Here, we seek to answer both of these questions. We use

computational modeling to uncover the computational mecha-

nisms that enable humans to avoid dynamic threats in complex

virtual environments. While on the surface such successful

avoidance behavior may not appear complex or noteworthy,

our results indicate that this ability depends on sophisticated

computational mechanisms. Together, our results indicate that

humans infer predators’ goals by exploiting an internal model

of the world. This inferred knowledge is then used to predict

and simulate predators’ actions when planning, enabling flexible

avoidance (Figure 1A). These findings outline a flexible process

of social inference and decision-making, which may be uniquely

human, that supports generalized avoidance.

RESULTS

Participants learn to predict threatening virtual agents’
actions
Five hundred and ten participants completed a task that involved

moving in a 3D-rendered 2D virtual environment made up of hex-

agonal cells in order to collect rewards (represented by coins)

while avoiding being eaten by a virtual threatening agent,

described as a ‘‘blob monster’’ (Figures 1B–1F). Critically, the

behavior of the threatening agent was guided by its specific pref-

erence (i.e., a non-zero reward weight) for only one of the three

features of the environment (blue trees, red ground, or the gray

‘‘prey’’ robot, highlighted in cyan). This meant it would head to-

ward the feature for which it had a preference. Participants

played a number of games, each of which took place in a

different environment, but with the predator’s preference re-

maining constant. Participants were instructed that the preda-

tor’s behavior would be guided by its preference for one of the

three features.

In experiment 1 (n = 150), our first question was whether par-

ticipants could successfully learn another agent’s policy, which

we tested by asking the participants to predict the action they

expected the agent to take in a given state, accompanied by rat-

ings of confidence in their predictions. They could accomplish

this either by goal inference or by policy learning. On each trial,

participants were asked to predict where they thought the agent

would move prior to observing its actual movements. Impor-

tantly, the agent behaved predictably, with no stochasticity in

its action selection, meaning that accurate prediction was

possible if its preferences were learned accurately. This ensured

that learning was not unnecessarily challenging for participants;

while the complexity of the task meant that learning took time,

successful learning was a prerequisite for evaluating models of

how this learning occurred.

Across all three rewardweight conditions in experiment 1, par-

ticipants’ one-step predictions were significantly above chance

(condition A, t(49) = 20.21, p = 2.04 3 10�25, d = 5.72; condition

B, t(49) = 23.09, p = 5.15 3 10�28, d = 6.53; condition C, t(49) =

27.12, p = 3.643 10�31, d = 7.67; Figure 2A), indicating that they

were able to predict the agent’s actions accurately. Accuracy

tended to improve across trials and games, as indicated by a

Bayesian regression model predicting the probability of being

correct from trial number (mean b = 0.07, 95% highest posterior

density interval [HPDI] = [0.05, 0.10]; Figure 2B) and game num-

ber (mean b = 0.18, 95%HPDI = [0.13, 0.24]; Figure 2B), confirm-

ing that participants were learning about the agent’s policy incre-

mentally as they completed the task. This was supported by an

increase in confidence ratings across both trials (mean b = 0.10,

95% HPDI = [0.08, 0.12]; Figure 2C) and games (mean b = 0.20,

95% HPDI = [0.14, 0.26]; Figure 2C).

Participants generalize across environments by
learning threatening virtual agents’ reward weights
To understand whether participants had indeed learned the

agent’s preferences from the observations in order to predict their

actions,we collected participants’ estimates of the agent’s prefer-

ences for the three features in the environment (blue trees, red

ground, and the robot character controlled by the participant) at

the end of each game. Across all three reward weight conditions,

participants were able to report the agent’s preferred feature

significantly more accurately than would be expected if they had

not learned its preferences (condition A, t(49) = 21.96, p =

5.17 3 10�27, d = 6.21; condition B, t(49) = 27.62, p = 1.57 3

10�31, d = 7.81; condition C, t(49) = 20.35, p = 1.52 3 10�25,

d = 5.75; Figure 2D). This effect was remarkably consistent across

participants, with 99.3% of participants producing more accurate

ratings than expected under this null hypothesis (Figure 2E).

Action prediction is explained by a combination of policy
learning and goal inference
Given participants’ ability to infer the agent’s reward function

accurately, we expected that participants would use this infor-

mation to inform their predictions of the agent’s actions. As

such, we expected that behavior would be better explained by

a model incorporating goal inference (i.e., predicting an agent’s

(G) Illustration of how environments decoupled preferences from basic elements of behavior. Here, the monster has a preference for the trees and moves

accordingly, but due to the environment layout it occupies red cells and travels primarily in the direction of red cells, while heading away from the trees.

(H) Illustration of how this decoupling allowed goal inference and policy learning to be distinguished. Policy learning models predict that the agent will continue

repeating the same moves it had made previously, moving either right or down. Goal inference models instead account for the fact that the agent will choose the

action that brings it closest to the trees, which are its true preference.
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action based on its reward function) than one using policy

learning (i.e., learning the agent’s preferred action, independent

of its goal alone). Critically, environments were designed such

that the predator’s behavior was not trivially linked to the fea-

tures of the environment (Figure 1G).

We tested this using a series of computational models. The

simplest policy learning model predicted the agent would repeat

its previous action, ignoring its prior history. The next model

learned a recency-weighted estimate of each action’s value (Fig-

ure 3A), while the finalmodel generalized this learning process us-

ing a Gaussian kernel (Figure 3B), such that the value of states

adjacent to the one chosen was also updated on each trial. The

goal inference model, on the other hand, represented the task

as a Markov decision problem (see STAR Methods) and deter-

mined the optimal policy for the Markov decision process (MDP)

according to the agent’s true reward function. The agent’s next

actionwas thenpredictedaccording to the resultingactionvalues.

Note that, while we refer to this as ‘‘goal inference,’’ as it predicts

actionsbasedonknowledgeof theagent’sgoals, for convenience

we provide the model with the objective reward weights rather

than requiring it to infer these. Random-effects analysis of model

fit usingBayesian information criterion (BIC) scores supported our

primary hypothesis, showing that the goal inference model fitted

the data significantly better than the policy learning model

(t(149) = 22.25, p = 3.233 10�49, d = 3.63; Figure 3C).

However, prior work has suggested that human participants

rely on a combination of complex goal inference based on known

preferences and simple policy learning.14 To test this, we per-

formed exploratory analyses evaluating models that combined

the predictions of the goal inference and policy learning models,

weighting the predictions of each model according to an esti-

mated weighting parameterW. Notably, model comparison indi-

cated that a combination of goal inference and policy learning

with generalization provided the best fit to the data of all the

models tested (Figure 3C), suggesting that participants com-

bined both strategies to an extent. However, estimated W

parameter values indicated that participants tended to rely

more heavily on goal inference (mean = 0.87, SD = 0.2; higher

values indicate greater use of goal inference; Figure 3D), and

goal inference alone was the most common best-fitting model

across subjects (Figure 3E).

Reward weight inference is best explained by a
hypothesis-testing inverse reinforcement learning
model
What are the computational mechanisms that enable partici-

pants to infer the threatening agent’s reward weights? To answer

this question, we adopted a computational modeling framework

based on inverse reinforcement learning,6 in which algorithms

aim to learn an agent’s policy or reward weights based on obser-

vations of its actions.

We developed a model inspired by work on hypothesis testing

in human decision-making,15 alongside work on Bayesian inverse

planning,16 which uses sampling-based Bayesian inference to

predict the agent’s rewardweights based on its behavior (referred

to as HypTest; Figure 4A; see STAR Methods for details).

A

B C

D E

Figure 2. Participants’ predictions of threat-

ening agent’s behavior and preferences

(A) Proportion of threatening agent’s moves pre-

dicted correctly. Density plots represent the distri-

bution of accuracy scores within the sample,

calculated by taking the proportion of accurate

predictions across all trials for each participant.

Reward weight conditions correspond to the

agent’s preferences for the trees, the red ground, or

the robot prey. The dotted line represents the pro-

portion of correct responses expected if selecting

randomly.

(B) Left: group-level posterior predicted probability

of being correct from a hierarchical Bayesian

regression model, demonstrating the effects of trial

and game number on accuracy. Darker colors

represent later games. Right: posterior distribution

for the trial and game effect parameters in the pre-

diction accuracy model.

(C) Left: group-level posterior predicted confidence

in action predictions from a hierarchical Bayesian

regression model, demonstrating the effects of trial

and game number on accuracy. Darker colors

represent later games. Right: posterior distribution

for the trial and game effect parameters in the con-

fidence model.

(D) Reported reward weights for the three condi-

tions. Bars represent mean (±95% confidence in-

terval), while points represent individual partici-

pants.

(E) Prediction error across participants. The dotted

line represents the expected error if participants

were not learning the agent’s reward weights.

4 Cell Reports 42, 113008, August 29, 2023

Article
ll

OPEN ACCESS



Wecomparedour hypothesis-testingmodel against a selection

of model-free inverse reinforcement learning algorithms (Fig-

ure 3A),which inferred the rewardweightsof the threateningagent

based on the features it encountered or the features it was ex-

pected to encounter based on its direction of travel. This was

necessary to confirm that observed behavior could not be

explained by simpler approaches that did not rely on any form of

task model. For completeness, we also tested an existing

model-based inverse reinforcement learning algorithm from

the maximum entropy family (MaxEnt).19–21 This feature-expec-

tancy-based approach is commonly used within inverse rein-

forcement learning algorithms and has been successfully em-

ployed across a range of applications.6 As such, we included

this as a useful comparison model that is known to be effective

in many situations and seeks to learn reward weights rather than

imitating a policy directly. While this model is similar to HypTest

in that it incorporates knowledge of the task structure, MaxEnt

assumes that the features in each state are stable throughout

the agent’s trajectory. In condition 3, where the agent has a pref-

erence for the prey, the presence of the prey feature changes

according to the prey’s movements, creating a situation in which

MaxEnt cannot succeed (see STAR Methods for more detail).

Model comparison indicated that the hypothesis-testingmodel

wasable to recover the agent’s rewardweights substantiallymore

accurately than MaxEnt or model-free methods (Figure 4B), as

shownacrossbothadjustedR2 (HypTest=0.09,nextbestmodel=

�0.34) andBIC (HypTest = 232.89, next bestmodel = 292.31; Fig-

ure 4C), suggesting that thismodel-based approach provides the

best approximation of participants’ responses.

Participants account for threatening agents’ goal-
directed behavior during planning
Given the ability of participants to infer the other agent’s reward

weights, we reasoned that this should allow them to adapt their

A B

C D

E

Figure 3. Computational modeling of action prediction

(A) Illustration of themodel-free policy learningmodel. Selected actions (highlighted in red) are imbued with a ‘‘value’’ that is dependent on the difference between

the observed and the predicted action, weighted by a learning rate (here set to 0.5). The result is an inferred policy preference (bp) for the agent.

(B) Illustration of the model-free policy generalization model. This functions similar to the policy learning model, but the value of the action is generalized to

adjacent actions according to a squared exponential kernel.

(C) Model fit statistics (BIC) for each of the action prediction models tested. Bars represent the mean (±95% confidence interval) across participants, while points

represent BIC values for individual participants. Themodel highlighted in red is themodel with the lowest mean BIC, and the significance indicators correspond to

the two a priori hypotheses tests designed to compare the combined model against the goal inference and policy learning models. ***p < .001.

(D) Distribution of parameter values for the combined generalization model: a and l represent the learning rate and learning rate decay, respectively, for the policy

learning component, while W represents the contribution of goal inference in the combined model. Bars represent ±95% confidence intervals, while points

represent individual subjects’ parameter estimates.

(E) Best-fitting model for each subject in the sample.

Cell Reports 42, 113008, August 29, 2023 5

Article
ll

OPEN ACCESS



A

B

C

Figure 4. Computational modeling of preference ratings

(A) Illustration of the hypothesis-testing inverse reinforcement learning (IRL) model, which uses Bayesian inference to determine the threatening agent’s reward

weights based on predictions of its behavior generated according to candidate weights. The predictions can be provided by any valid method for determining

action probabilities given a known reward function, such as successor representation (SR) or dynamic programming (DP).

(B) Inverse reinforcementmodel predictions of agents’ rewardweights, with participants’ predictions shown in the far right column. Note that the presence of error

bars is inconsistent, as for some conditions all participants experienced the same agent, resulting in the same model predictions, while in others the agent’s

actions differed across participants. Error bars represent ±95% confidence intervals.

(C) Model fit statistics for the inverse reinforcement learning models tested, showing the BIC for each model across all predictions, where lower scores indicate

better fit.
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own plans depending on expectations of the agent’s goal-

directed behavior. In experiment 2 (n = 80), we adapted the

agent-prey task by creating environments that were carefully de-

signed to test this hypothesis. Participants were presented with

environments in which they could opt to move toward either a

cluster of rewards or an area with sparser rewards. Critically, in

some environments, heading toward the richer rewards would

lead them into the path of the agent as it moved toward its

goal, while in others the agent’s trajectory toward its goal would

result in it avoiding the richly rewarded area or passing through

the area rapidly. Participants were informed that the agent’s

preference was just for the trees; although it would nevertheless

eat the robot if their paths happened to cross. Thus, participants

had no ambiguity about the preferences of the agent. They also

made only four moves per turn, while the agent made six.

Accordingly, if participants were accounting for the agent’s

goal-directed planning based on known preferences, they

should either head toward or away from the richly rewarded

area, depending on whether they were likely to encounter the

agent. In contrast, if they were not accounting for the agent at

all, they should always head for the rich rewards. As expected,

results demonstrated that participants typically headed for the

sparsely rewarded regions when this would lead away from the

path of the agent (environments 1, 2, and 5) and headed for

the richly rewarded region when the agent’s trajectory enabled

them to be avoided (environments 3, 4, and 6). A chi-squared

test confirmed that a higher proportion of participants entered

the richly rewarded zone when it was safe (c2(2) = 131.44, p =

1.97 3 10�30; Figure 5E).

To provide further evidence for participants’ ability to plan

interactively (i.e., accounting for the other agent’s behavior in

their decision-making) and determine the computational mecha-

nisms supporting this ability, we developed a series of planning

models and fit these to participants’ behavior. The addition of

another agent transforms the environment into an a more com-

plex MDP, in which each state can be additionally defined by

the position of the agent. This results in a large (2102 states

based on predator and prey locations) MDP that is not straight-

forwardly amenable to dynamic programming solutions. Instead,

we turn to Monte Carlo tree search (MCTS) with a uniform rollout

policy as a tree-search-based approximation method. To allow

interactive planning, we augment the standard MCTS apparatus

with knowledge about the agent’s expected actions to allow

informed predictions about the consequences of the prey’s ac-

tions. We used two variants of this model, one that predicted

the agent’s actions based on its known preference (MCTS-

RW; Figure 5B) and one that assumed the agent chose its ac-

tions randomly (MCTS-Rand; Figure 5A). We compared these

models to an MCTS model that ignored the presence of the

agent entirely (MCTS).

In environments where it is safe to enter the rich reward area,

MCTS-RW and MCTS predict that the participant will move to-

ward the rich rewards, whileMCTS-Rand avoids the rich rewards

as it assumes the threatening agent may stray into this area (Fig-

ure 5F). In environments where it is not safe to enter the rich

reward area, MCTS-RW and MCTS-Rand both avoid the rich

reward area, whileMCTSwill enter the area as it ignores the pres-

ence of the agent (Figure 5F). Comparing these three models

across the two environment types allows us to determine the

strategy that most accurately approximates participants’

behavior and demonstrate that participants are accounting for

the agent’s goal-directed behavior. Through this method, we

were able to determine the level of complexity that characterized

participants’ planning process.

Results revealed that the model that accounted for the

agent’s expected goal-directed behavior (MCTS-RW) fit signif-

icantly better than MCTS-Rand in the approach condition

(t(79) = 7.97, p = 1.98 3 10�11, d = 1.78; Figure 5G) and signif-

icantly better than MCTS in the avoid condition (t(79) = 7.17,

p = 7.09 3 10�10, d = 1.60; Figure 5G), suggesting that partic-

ipants were engaging in a multistep planning process that

explicitly accounted for the agent’s goal-directed movements

and raising the possibility that individual differences in avoidant

planning may be explained by the characteristics of this plan-

ning process.

Uncertainty about threatening agents’ decision-making
induces avoidant behavior
In experiment 2, the agent behaved predictably, selecting ac-

tions according to a max policy, and participants were explicitly

informed of its reward weights. As a result, it was possible for

participants to predict its behavior with high accuracy and

adapt their plans accordingly. We reasoned that if this were

made more challenging, participants would become more avoi-

dant, for example, becoming less likely to select a patch of rich

rewards nearer the agent, even when the agent was unlikely to

traverse this region, in favor of a sparsely rewarded patch that

was farther from the agent. We also expected that the planning

horizon would influence avoidance, with longer planning hori-

zons inducing more uncertainty about encounters (due to a

higher number of possible futures to be evaluated) with the

agent, leading to more avoidant behavior. To test this, we con-

ducted experiment 3 (n = 280; Figure 6A), which manipulated

irreducible uncertainty about the predator’s actions (through

the predator selecting actions stochastically) and reducible un-

certainty about the threatening agent’s preferences (by

requiring participants to infer the predator’s preferences) along-

side the number of moves made by the participant on each turn

(one move or four). This resulted in a 2 (short or long planning

horizon) 3 3 (predictable, irreducible uncertainty, reducible un-

certainty) factorial design. For simplicity, the predator had a

consistent preference for the trees only across all conditions,

and participants played one practice game initially (in an

environment designed to make it impossible for the agent to

catch the participant) to demonstrate the agent’s behavioral

characteristics.

A between-participants ANOVA revealed a main effect of un-

certainty regarding the predator’s actions on the amount of

time participants spent in the rich reward zone (F(2, 274) =

17.70, p = 5.86 3 10�8, h2p = 0.11; Figure 6D), which planned

contrasts indicated was driven by less time being spent in

the rich reward zone when the agent behaved unpredictably

relative to the condition where it chose actions predictably

(t(158) = 5.15, p = 0.000002, d = 0.82; Figures 6B–6D). Contrary

to our hypothesis, contrasts indicated there was no significant

difference between the predictable agent condition and the
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condition where no information regarding reward weights was

provided (t(162.37) = �0.12, p = .90, d = �0.02; Figure 6D),

meaning that participants were less likely to enter the rich

reward zone when there was irreducible uncertainty about the

agent’s behavior. Further, qualitatively, behavior followed

similar patterns across both conditions, indicating that it was

not the case that participants followed an equally avoidant

but distinct trajectory when this information was not provided.

In addition, there was no main effect of planning horizon (F(1,

274) = 0.03, p = .87, h2p = 0.00; Figure 6D), indicating that un-

certainty induced by the depth of the planning process did

not increase avoidance.

A B

C

D

F

E

G

Figure 5. Computational modeling of participants’ action selection

(A) Illustration of MCTS simulations, where the agent is assumed to move randomly (MCTS-Rand).

(B) MCTS variant where the agent’s policy, based on known reward weights, is accounted for in the planning process (MCTS-RW).

(C) Environments used in experiment 2. Yellow, reward; blue, trees; red, red ground; black, wall. The red and black crosses represent the agent and prey,

respectively. In environments 1, 4, and 6, entering the area with concentrated rewards (the rich reward zone) will result in an encounter with the agent and should

thus be avoided. In environments 2, 3, and 5, the rich reward zone can safely be entered as the agent will move toward the trees.

(D) Heatmaps showing state occupancy across participants, with brighter colors representing states that are more frequently occupied.

(E) Proportion of participants entering the rich reward zone in each environment, demonstrating that participants tend to enter when it is best to approach the rich

rewards, but not when it is best to avoid.

(F) Hypothesized results of planning model fitting. The top represents environments where the rich reward zone should be approached, where the critical

comparison is between the MCTS variant that assumes the agent acts randomly (MCTS-Rand) and the MCTS variant that accounts for the agent’s goal-directed

behavior based on its known reward weights (MCTS-RW). The bottom represents environments where the rich reward zone should be avoided, where the critical

comparison is between non-interactive MCTS (which plans as if the agent did not exist) and MCTS-RW.

(G) Results of model comparison, showing the log likelihood of each model for each participant, summed across environments within each condition. Error bars

represent 95% confidence intervals, and the points represent individual participant log likelihoods.***p < .001.
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Individual differences in avoidant behavior are not
explained by assumptions about threatening agents’
predictability
While our experiments demonstrated a group-level tendency to

account for other agents’ behavior optimally, allowing the collec-

tion of rewards nearer a threatening agent if the agent’s goal-

directed behavior would lead it to avoid the location of these re-

wards, some participants’ behavior was more avoidant even

when the agent behaved predictably. As our results indicated

that participants are more avoidant when the agent behaves un-

predictably, one potential explanation for these individual differ-

ences is variability in participants’ prior expectations of the

A

B

C

D

F

E

Figure 6. Effects of uncertainty on participants’ behavior

(A) Environments used in experiment 3. Yellow, reward; blue, trees; red, red ground; gray, wall. The red and black crosses represent the agent and prey,

respectively.

(B) State occupancy in the long planning horizon, predictable agent condition.

(C) State occupancy in the long planning horizon, unpredictable agent condition, demonstrating greater avoidance of the rich reward zones.

(D) Proportion of time spent in rich reward zones (indicated by highlighted rectangular areas) for each condition. Proportions represent the amount of time spent in

rich reward zones out of themaximum amount of time that was possible in each environment, with bars representing themean proportion across participants and

error bars representing 95% confidence intervals. ***p < .001.

(E) Distribution of inferred softmax temperature parameter values and threat sensitivity values in the predictable (top) and unpredictable (bottom) conditions for

the MCTS-RW planning model.

(F) Relationship between model parameters and avoidant. The top shows posterior density estimates for Bayesian regression models evaluating the relationship

between model parameters and time spent in the rich reward zone. The bottom shows this relationship in the predictable condition in the form of a scatterplot.
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agent’s predictability. To test this hypothesis, we used a variant

of our MCTS planning model incorporating agent action unpre-

dictability, simulating the agent’s actions using a softmax deci-

sion rule with an inverse temperature parameter that resulted

in different levels of decision noise, alongside a threat sensitivity

parameter that modulated the cost of getting caught by the

agent.

Results of model fitting in the condition where the agent

behaved entirely predictably indicated that softmax tempera-

tures were significantly higher than zero (mean [SD] = 2.71

[1.08], t(79) = 22.26, p = 8.85 3 10�36; Figure 6E), indicating

some degree of decision noise. We observed a range of threat

sensitivity values, with subjects on average underweighting the

cost of getting caught (mean [SD] = 0.56 [0.49]; Figure 6E). To

explore the extent to which these two components of the model

predicted avoidant behavior, we tested whether the inferred

parameter values were correlated with the amount of time spent

in the rich reward zone, again focusing on the predictable condi-

tion. A Bayesian regression model indicated that threat sensi-

tivity was associated with the degree of avoidance (mean b =

�0.43, 95% HPDI = [�0.50, �0.35]; Figure 6F), but decision

noise was not (mean b = �0.03, 95% HPDI = [�0.06, 0.01]; Fig-

ure 6F). To test this further, we repeated this modeling procedure

in the unpredictable condition. Again, threat sensitivity was

associated with avoidance (mean b = �0.33, 95% HPDI =

[�0.42, �0.25]; Figure 6F) while decision noise was not (mean

b = �0.01, 95% HPDI = [�0.05, 0.03]; Figure 6F). To determine

the extent to which components of the planning process were

influenced by agent unpredictability, we compared parameter

values across the predictable and unpredictable conditions.

Counter to our expectations, this revealed that inferred decision

noise did not differ across conditions (predictable mean [SD] =

2.71 [1.08], unpredictable mean [SD] = 3.02 [1.27], t(118) =

1.40, p = 0.16), but threat sensitivity did (predictable mean

[SD] = 0.56 [0.49], unpredictable mean [SD] = 0.93 [0.58],

t(118) = 3.66, p = 0.00038), suggesting that people became

more sensitive to threat in the unpredictable condition but

were not explicitly simulating the predator’s actions in amore un-

predictable manner.

DISCUSSION

The ability to predict other agents’ actions and respond accord-

ingly is vital for ensuring appropriate behavior in a range of social

settings. Here, we demonstrate that, in the context of a predator-

prey setting, human participants infer virtual threatening agents’

preferences using a model of the social environment and that in-

formation about agents’ goal-directed behavior based on these

preferences is used when planning to maximize reward gained

while avoiding danger.

We found that participants could infer the reward weights of

an agent based purely on observations of its behavior. While it

is well established that humans are able to infer others’ goals,

our findings demonstrate how this occurs at a computational

level in a large and complex open environment. Specifically,

this was explained by an inverse reinforcement learning model

that used Bayesian inference to evaluate hypotheses about the

agent’s preferences. Importantly, this model relied on a model

of the environment, indicating that participants use an internal

model of the world to make inferences about other agents’

preferences. It is also notable that participants did not only

learn the agent’s policy, as modern inverse reinforcement

learning algorithms typically do,23–25 but also learned the

weights it placed on different features in the environment, as

has been shown in other computational models of social

behavior in humans.8,9 This enables broad generalization

across distinct environments, with different transition structures

and feature distributions, as knowing the agent’s reward

weights allows its intentions to be inferred across any environ-

ment. These findings extend prior work on imitation learning

and goal inference14,16,26 in humans to more complex, open

environments and indicate that these processes not only facil-

itate social understanding but also allow flexible avoidance of

threats. We also note that, while the task was intentionally de-

signed to enable successful learning of reward weights, there

was substantial individual variability in accuracy, suggesting

that there may be subtle individual differences in the exact

strategy used to achieve this.

Our results indicate that human participants are adept at pre-

dicting the behavior of freely moving threatening agents. When

asked to predict the behavior of another agent in an open virtual

environment, all participants were able to do so at levels that

were well above chance. While this may appear intuitive, the

mechanisms necessary to achieve such accurate prediction

are non-trivial. Using computational modeling, we demonstrated

that these predictions were best explained by a combination of

model-based and model-free strategies, a result reminiscent of

previous findings in non-competitive social interactions showing

that humans adaptively combine imitation and emulation strate-

gies when learning about others’ behavior,14 albeit with the

model-based strategy making the strongest contribution. This

model-based strategy used information about the agent’s goals

to infer its intentions and, thus, its behavior. These results indi-

cate that humans exploit an internal model of their social environ-

ment, including knowledge of agents’ goals, to enable flexible

avoidance that goes beyond simple stimulus-response strate-

gies. This has important implications, as it indicates that sophis-

ticated model-based planning not only is used to guide first-per-

son decision-making but also can be flexibly deployed to plan

from other agents’ perspectives, enabling their likely course of

action to be predicted.

When focusing on participants’ own planning, we found that

decision-making was best explained by a tree-search planning

model that accounted for the agent’s goal-directed behavior,

indicating that participants’ knowledge of the agent’s intentions

is actively exploited when planning to avoid predation. While it

may seem intuitive that people should use this knowledge, our

results reveal that such behavior relies upon complex mecha-

nisms involving interactive simulations of multiple agents several

steps into the future. This extends prior work demonstrating that

tree-search algorithms can approximate human planning

behavior9,10,22,27 by showing that this process can incorporate

simulations of other agents’ goal-directed actions in complex

open-world situations and that this multistep interactive planning

process enables flexible avoidance. We also found that partici-

pants were generally more avoidant when agents behaved less
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predictably, a finding reminiscent of prior work showing that un-

certainty in predator attack locations promotes avoidant

behavior,28 although this was the case only when unpredict-

ability was induced by random action selection. While we did

not observe any effect of the planning horizon, which we ex-

pected because a longer planning horizon induces uncertainty

by expanding the number of possible futures to be evaluated,

this may be because many of these possible futures do not in

fact involve getting caught. We also did not find any increase

in avoidance when the predator’s reward weights had to be in-

ferred, rather than being provided. However, this may reflect a

failure of the manipulation, as participants were generally able

to infer these reward weights quickly.

Notably, computational modeling revealed that individual dif-

ferences in avoidant behavior when the agent behaved predict-

ably were associated with assumptions about the agent’s pre-

dictability, with participants who assumed the agent to behave

less predictably being more avoidant. Such overestimations of

the agent’s unpredictability are not necessarily suboptimal;

in situations where only a limited number of moves have been

observed it may be rational not to assume the other agent is

entirely predictable. Avoidant behavior in this context may also

be influenced by participants’ assumptions about their own abil-

ity to act optimally or the success of their actions,29 although our

task was not designed to test this. These results build on a

growing literature on the computational mechanisms supporting

stimulus-response learning30–32 and model-based planning in

avoidance33–35 by revealing how humans use knowledge of

agents’ intentions to facilitate flexible avoidance. In addition,

our results extend the extant literature demonstrating how

humans make avoidance decisions in response to simple threat-

ening agents.36–40 A common theme running through our results

is the emphasis on model-based control: across action predic-

tion, goal inference, and avoidance decision-making, partici-

pants relied on a model (or simulation) of the environment to

avoid predation. The role of model-based control, and internal

cognitive maps more generally, in permitting flexible, general-

ized behavior is becoming increasingly appreciated,41–44 and

our results demonstrate that the use of an internal model of the

world is a hallmark of avoidance when facing dynamic, social

threats.

Our findings also build on studies investigating the computa-

tional mechanisms supporting social inference, often referred

to as mentalizing. Prior work has highlighted the role of model-

based planning and simulation in mental state infer-

ence8–10,16,45,46 and described how humans adaptively engage

goal inference strategies in social interactions.14 Our results sug-

gest that these mechanisms also enable flexible avoidance of

threatening agents in addition to social interactions with other

humans.While our results are immediately applicable to environ-

ments involving simple threatening agents, we speculate that

similar mechanisms may underpin more complex behavior in

everyday life. This has clear relevance for our understanding of

psychopathology, where conditions such as social anxiety and

psychosis are often associated with pathological inferences

regarding threat posed by others and their intent to cause

harm.47–49 In addition, other work has suggested that distortions

within cognitive maps of the environment may play a role in path-

ological anxiety,29,50,51 suggesting that our work may also have

implications for this condition.

Limitations of the study
One limitation of our work is that we did not consider complex

cognitive hierarchies, as in previous work on simple interactive

games, where participants consider a partner’s own social infer-

ences and act in accordance. While the simplicity of our

approach made our computational models tractable and is likely

to be representative of simple predators that may lack their own

complex prospective social planning abilities, future research

should consider how deeper interactive planning may support

avoidance. It is also notable that the MaxEnt algorithm was un-

able to infer the agent’s reward weight accurately. It is possible

that this is due to the sparsity of the features in our task environ-

ment (most states did not contain a salient feature); MaxEnt

relies on feature occupancy counts, which may limit its success

when there are few features in the environment. Furthermore, the

HypTest model was designed to describe the primary computa-

tions underpinning reward weight estimation, but by no means

does this represent a full account of the mechanisms supporting

this behavior. While the model provides a basic mechanistic

explanation for reward weight estimation, an interesting chal-

lenge for future research will be to determine in more detail

how its components function (for example, sampling of candi-

date reward weights) at both a computational and a neural level

and explore how biases in estimation may arise.

It is important to note that, while we took advantage of the

predator-prey setting to investigate these processes, our results

are not necessarily specific to threat avoidance. It remains an

open question whether the mechanisms identified here are spe-

cific to avoidance of social agents or represent more domain-

general model-based planning apparatus.52 In addition, while

we have demonstrated the relevance of these mechanisms to

avoidance, it is possible that similar mechanisms underpin

non-avoidant behavior in the presence of other agents, such

as cooperation. Further, the threat used in our experiments

was a loss of points (with associated monetary loss). While we

have shown previously that loss of points in engaging, game-

based tasks can induce subjective anxiety and replicate

behavioral patterns observed in response to electric shocks,31

it remains a possibility that this was not as aversive as traditional

primary aversive stimuli.

We also focused on characterizing the basic foundational

mechanisms that provide for effective behavior in a relatively

straightforward task setup, but it will be intriguing to explore

how these basic mechanisms may adapt to different environ-

ments, particularly when the task is made more challenging. In

the same vein, our task made it straightforward for participants

to build an accurate model of the other agent and its environ-

ment. It would also be interesting for future work to explore

how the internal model used to guide prediction and planning

may become inaccurate and the consequences of this for

behavior. Relatedly, our results focus on computational mecha-

nisms at the algorithmic level and do not reveal their neural

implementation directly. However, our results do point clearly to-

ward candidate neural mechanisms. It is likely that the computa-

tional mechanisms supporting model-based planning in general
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also subserve avoidance of threatening social agents, given the

reliance of our computational models on internal models of the

environment. Model-based planning is known to be dependent

upon the hippocampus and medial prefrontal cortices,53–55

which are thought to represent internal models both of the envi-

ronment56,57 and of abstract relational knowledge,58 including

social networks.59 In addition, our planning models rely on sim-

ulations of trajectories through an interactive state space. Given

this, it is notable that recent work has highlighted the importance

of state reactivation and sequential replay in human model-

based control,60,61 including in aversive contexts,35 which may

represent a neural implementation of the prospective simula-

tions upon which our planning models rely.
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Data and code availability
d All behavioral data from this work has been deposited on the Open Science Framework: https://doi.org/10.17605/OSF.IO/

FWGQA (https://osf.io/fwgqa/).

d All original code has been deposited on GitHub: https://doi.org/10.5281/zenodo.8039324 (https://github.com/tobywise/

interactive-avoidance).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical approval
This study was approved by the California Institute of Technology Institutional Review Board.

Sample
Participants were recruited through Prolific62, and were selected based on being based in the United States and having a 95%

approval rate. All participants provided informed consent. For Experiment 1 we recruited 50 participants in each of the three condi-

tions, for Experiment 2 we recruited 80 participants, and for Experiment 3 we recruited 40 participants in each of the six conditions,

except for the long horizon, predictable agent condition where we recruited 80 participants. All sample sizes were determined based

on effects seen in pilot data. In the event that participants did not complete the full task, or provided data that was incomplete, we

continued recruiting until the required number of usable participants was reached. No participants were excluded subsequently. Age

and gender of the subjects were not recorded due to a technical issue, but we do not expect this to influence the generalizability of our

results.

METHOD DETAILS

Task
Participants completed a task that involved navigating through a 3D virtual environment with the aim of accumulating reward, while

avoiding being eaten by a threatening agent. The environment consisted of a 21 X 10 hexagonal grid, in which certain hexagonal cells

were removed to create ‘‘walls’’. Rewards were represented by spinning gold coins, and the environment contained two other fea-

tures: red ground (cells colored red) and trees (cells with a tree located on them). Participants controlled a robot agent, while the
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threatening agent was represented by a ‘‘blob monster’’. The environment was created using Unity and presented online using

WebGL. Participants were informed prior to starting that each reward gained would give them 100 points, while being caught by

the agent would cause them to lose 1000 points. It was possible to gain a negative number of points, although this would not result

in a negative bonus payment. Points were converted into a monetary reward at the end of the task, with each 1000 points being

worth £0.2.

The task was split into a number of different ‘‘games’’, each of which featured a different environment, but participants were

informed that the agent was the same across all the environments they encountered. Within each game, the participant and

the agent took turns to move around the environment. Participants were first asked to select the cells they wished to move to,

before observing their own movements and then seeing the agent make its own moves. If the agent entered the cell occupied

by the participant, participants were told that the robot had been eaten and the game ended. Prior to beginning, participants

completed a brief tutorial where they were introduced to the different elements of the task and asked to try out each of these

elements (for example, making predictions about the agent’s moves). Experiment 3 also included an additional practice environ-

ment after the tutorial and before the environments of interest. This was included to demonstrate the agent’s behavior to partic-

ipants so that they could gauge its level of predictability but was designed to be challenging for participants to infer the agent’s

reward weights so that these remained unclear.

In Experiment 1, participants were asked to predict the agent’s movements prior to seeing it move, which was done by asking them

to select the cells they expected it to move to on each turn. After making their predictions, participants were asked to rate their con-

fidence in their predictions using a sliding scale ranging from ‘‘not at all confident’’ to ‘‘very confident’’. An additional financial bonus

was provided for correct predictions to incentivize accurate predictions, with 4 predictions being chosen at random at the end of the

task and £0.2 awarded for each correct prediction, where the probability of a prediction being chosen was dependent upon reported

confidence in the prediction. Participants were also asked to provide estimates of the agent’s preference, which was done using a

9-point scale, where the midpoint was 0 (i.e., no preference), enabling them to rate its likes and dislikes (Figure 1C). In Experiment 2

and Experiment 3 (except the condition where reward weight information was not provided), participants were shown the agent’s

preferences prior to beginning the game using gauges that showed how much it liked or disliked each feature in the environment

(Figure 1D). In Experiment 1, participants made one move per turn, while the predator made 2, for a total of 10 turns each. In Exper-

iment 2, participants made 4 moves per turn while the predator made 6, with a total of 2 turns each. Finally, in Experiment 3, the

number of moves depended on the condition. In the short planning horizon condition, participants made 1 move per turn while

the other agent made 2. In the long planning horizon, participants made 4 moves per turn while the predator made 8. In the short

horizon condition, each had 12 turns, while in the long condition each had 3 turns. This ensured that the number of total moves

was the same across conditions.

In order to determine the agent’s movements, the environment was represented as a Markov Decision Process (MDP), defined by

the 4-tuple ðS;A;P;RÞwhere S represents the set of all possible states, (each of which corresponds to a cell in the grid),A represents

the actions available to the agent at each state (typically 6 directions of travel, apart from states at the edge of the grid and walls), P

represents the probability of transitioning to a given state s’ from state s when choosing action a (in this case, transitions were fully

deterministic), and R is the reward function, indicating the reward available to the agent for taking action a in state s. States were

associated with binary features, f1; f2; ::::˛F, and we write fðsÞ = ðf1ðsÞ; f2ðsÞ;.Þ as the feature vector for state s. This vector was

continually updated to take account of the movement of the prey, and each state could possess any combination of the features,

for example taking the value fðsÞ = ½1 0 1� if the cell represented by state s was occupied by both trees and the prey. The agent

was considered to have a vector r of reward weights such that the net reward associated with state s derived from the dot

product fðsÞ,r = PifiðsÞri between the features and weights. When moving around the environment, the agent’s reward was

determined by Rðs; aÞ = fðs0Þ,r for the state s’ (deterministically) entered when taking action a in state s,. In practice, reward weights

were set to either 0 or 1. The predator was forced to move on each state, and therefore if it reached a preferred state, it would sub-

sequently move to other preferred states rather than staying in one place.

The movements of the agent were determined by solving for the optimal value function within this MDP using value iteration, i.e.,

iteratively applying the update equation (assuming that the prey would stay still):

Vk+1ðsÞ = max
a

 
Rðs; aÞ+g

X
s0
Pðs0js; aÞVkðs0Þ

!
(Equation 1)

For each state s in the MDP (where a represents a given action, Rðs; aÞ represents the reward gained by taking action a in state s, g

represents a discount factor, and k represents the current iteration. TheQ value of each action depends upon the immediate reward

received following its selection in addition to the current value estimate of the next state reached:

Qðs; aÞ = Rðs; aÞ+g
X
s0
Pðs0js; aÞVkðs0Þ (Equation 2)

The discount factor g was set to 0.9 to provide a balance between optimality and computation time and the algorithm was termi-

nated after 500 iterations. The agent’s action selection differed across the experimental conditions. In the majority of conditions (all

except the unpredictable condition in Experiment 3), actions were selected using a max strategy (i.e. selecting the action in the
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current state with themaximumQ value). In other conditions, a softmax decision rule was used instead to engender unpredictability in

the agent’s behavior.

Ptðs; aÞ = eðQtðs;aÞ=tÞPN
i = 1

eðQtðs;aiÞ=tÞ (Equation 3)

Where N is the number of actions available in the current state and t is a temperature parameter, which was fixed at 1 to make the

agent behave in a way that was unpredictable, but not entirely random.

QUANTIFICATION AND STATISTICAL ANALYSIS

Regression models
To assess the development of prediction accuracy and confidence over the course of the task, we used Bayesian regression models

implemented in PyMC363. These models characterized the dependent variable (either probability of being correct or confidence rat-

ings) as a linear combination of an intercept, the game number and the trial number. Models used a hierarchical non-centered spec-

ification, where the participant-level parameter for predictor k was determined by:

bsubjectðkÞ = mgroupðkÞ+ sgroupðkÞ,εsubjectðkÞ (Equation 4)

where ε is a participant-level offset parameter. For themodel predicting prediction accuracy, themodel used a Bernoulli likelihood for

the observations, while a Beta likelihood was used for the model predicting confidence.

Action prediction models
To explain the computational mechanisms supporting participants’ ability to predict the agent’s upcomingmovements, we fit a series

of decision-making models. The first model family was a simple policy learning model that learned the action that the agent tended to

take (i.e., which of the 6 actions, with no regard for the state it currently occupied). This model updated its expectation about the

agent’s likely next move according to a prediction error:

bptðaÞ = bpt� 1ðaÞ+at,
�
da;at;obs � bpt� 1ðaÞ

�
(Equation 5)

where bptðaÞ is the estimate of the probability of performing action a after observing the action on trial t, at;obs is the action actually

observed on that trial and at is a learning rate parameter that scaled the effect of each prediction error. This was designed to decrease

with increasing numbers of observations, and was adjusted on each trial according to:

at = at,n
� l
t (Equation 6)

With n representing the number of observations and l being a decay parameter that was estimated alongside the starting value of a.

We also extended thismodel to account for correlations among action values, as adjacent action values are likely to bemore similar

than non-adjacent ones due to them typically leading to similar future states. To achieve this, we convolved the observed action

choice (a one-hot vector representing the one chosen action on the current trial) with a squared exponential kernel.

kðx; xuÞ = exp

"
� ðx � xTÞ2

2L2

#
(Equation 7)

This resulted in the ‘‘outcome’’ of the trial (i.e., the chosen action) being generalized to adjacent actions, as if they had themselves

been partially chosen through convolution with this kernel.bat;obs = kðat;obs; at;obsÞ (Equation 8)

Where at;obs is a one-hot vector representing the action chosen by the agent on trial t. The estimate of bp is then updated according to

Equation 5, using baobsðaÞ in place of da;at;obs . The length scale parameter Lwas fixed at 0.02 for model fitting. Values were initialized at

zero, and learned values persisted across different games.

The final variant of the policy learning model was one that simply assumed the agent would repeat its previous action, which was

achieved by setting the learning rate a to 1 and removing the learning rate decay.

We also fit a model that predicted the agent’s moves based on its inferred goals, using an explicit model of the task. This was

achieved by determining the optimal policy using value iteration (Equation 1) and making predictions assuming the agent would

select a sequence of actions using a max policy. Finally, we fit models that combined the policy learning model variants with the

goal inference model. These models used the bp values estimated by each model, scaled to the range 0-1 to ease interpretation

of resulting weights on the values from each model:

bp =
bp � minðbpÞ

maxðbpÞ � minðbpÞ (Equation 9)
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These were then weighted according to weighting parameter W (which could take values from 0 to 1).bpcombinedðaÞ = W,bpgoalðs; aÞ+ ð1 � WÞ,bppolicyðaÞ (Equation 10)

This provided a prediction about the agent’s preferred action that combined information from policy learning and goal inference

models. There were 3 variants of the combined model, combining the goal inference model with each of the three policy learning

models. For all models, Q values were transformed into choice probabilities using a softmax function with a temperature parameter

value of 1 (Equation 3), to account for uncertainty in participants’ predictions. Model fit was determined according to the log likelihood

of the model with a categorical likelihood function.

� LðqÞ = �
XN
t = 1

logðbpcombinedðat;obsÞÞ (Equation 11)

Where bpcombinedðat;obsÞ is the probability of the chosen action on trial t up to total predictions N. Parameters qwere the learning rate a

in the policy learningmodels and the weighting parameterW in the combinedmodels, andwere estimated using differential evolution

in SciPy. In addition, we calculated the accuracy of categorical predictions made by each model, and the Bayesian Information Cri-

terion (BIC) of the model as an index of model fit that accounted for model complexity.

Inverse reinforcement learning models
Participants’ ratings of the agent’s reward weights were modelled using a series of inverse reinforcement learning models. While the

goal of standard reinforcement learning is to find a policy that maximizes long-run reward given an MDP with a known reward func-

tion, inverse reinforcement algorithms seek to infer the reward function of an MDP (or for some algorithms an agent’s policy, or its

reward weights) given observations of an agent’s actions within that MDP. We note that the models described here are not designed

to be biologically plausible but are instead intended to illustrate the fundamental computational principles underpinning goal

inference. The reward weights represent the agent’s preferences for the features in the environment and can be positive or negative,

representing a like or dislike of the feature respectively, and the goal of these models was to estimate these values.

The simplest of these was a model-free strategy based on feature occupancy counts, based on the assumption that the agent

would spend more time in state containing the features it preferred. The estimated reward weights r for each of the features f ˛ F

were therefore calculated by:

ri =
X
t

fiðstÞ (Equation 12)

Where st each state occupied by the agent and fiðstÞ is a binary indicator of the i th feature’s presence in state st. The resulting indi-

vidual feature weights were used to compose the vector of feature weights r. For all model-free algorithms, the reward weight

estimation process was repeated at each step, with the feature map updated to account for the prey’s movements, and the resulting

feature weights were then summed across all time steps before being normalized, as described below.

The next model was also a model-free method that estimated the agent’s reward weights based on its direction of travel. This

summed the features that the agent would encounter in the states s0 it would occupy if it were to continue in its current direction

of travel (i.e., repeating its prior action until it reached the edge of the grid, at which point the accumulation of feature counts ceased),

repeating this process at each state s it was observed in. This represents a simplistic model-freemethod for estimating the predator’s

preferences based on its direction. The weight of each feature at each time step t was calculated as follows:

ri =
X
t

X
s0 ˛dirðst ;at;obsÞ

fiðs0Þ (Equation 13)

Where dirðst; at;obsÞ is the set of states that would be traversed starting from state st and carrying on in direction at;obs until the end of

the grid.

We also extended this to account for the relative frequency of features encountered along the agent’s direction of travel compared

to alternative directions. This involved repeating the process of feature counting for all alternative directions of travel (i.e., repeating

the other 5 actions available in the current state, and continuing to the edge of the grid) and summing the result.

Feature weight vectors for both the observed and alternative paths were then normalized as follows:

rnorm =
rP

i = 1

ri
(Equation 14)

Relative feature weights for the observed versus alternative trajectories were then calculated:

r = robsnorm � raltnorm (Equation 15)

Where robsnorm are is the normalized feature counts from the observed direction of travel and raltnorm is the equivalent for the alternative

directions of travel. One limitation of all these model-free methods is that they have difficulty accounting for the prey feature, as they

rely on accumulated feature counts within a trajectory; as the prey can only be encountered once, these approaches will tend to
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underweight the prey. In addition, being model-free they have no ability to represent the prey’s future moves, and therefore assume

the prey will remain in its current position.

We compared these model-free methods against two model-based inverse reinforcement learning algorithms. The first was a

variant of Infinite Time Horizon Maximum Causal Entropy64 (MaxEnt). This is an extension of the Maximum Causal Entropy20 and

Maximum Entropy21 inverse reinforcement learning algorithms but applied to MDPs with no clear terminal states, as the environ-

ments used in these experiments could be navigated freely for the number of moves allowed, with no absorbing states present.

This family of algorithms leverages the principle of maximum entropy to resolve uncertainty regarding the true reward weights, given

IRL problems are typically ill-posed with multiple potential solutions. Accordingly, MaxEnt prefers a policy that matches observed

behavior but is most uncertain otherwise. Exhaustive details on these algorithms are provided in the respective original papers,

and here we provide an overview of the basic algorithm used here.

This algorithm seeks to infer an agent’s reward weights based on observations of its actions within a given fully observable MDP

based on the principle of feature matching; this constrains the proposed reward weights based on the condition that they result in a

policy that encounters features with the same frequency as the observed behavior of the agent. The algorithm thus comprises two

steps: 1) Given an estimate of the agent’s reward weights br, identify a policy bp for the MDP using standard reinforcement learning; 2)

update the estimated reward weights br according to how accurately behavior under policy bp matches the features of the observed

behavior. We elected to use an infinite horizon variant of MaxEnt, as although the predator was given a fixed number of steps there

were no clear terminal states. While there may be some minor time-dependence in the predator’s policy, environments were

designed to minimize this, and the fact that the predator did not consume features on encountering them also served to limit

time-dependence.

More specifically, the algorithm starts with a randomly chosen estimate of br (which we set to zero for each feature) and solves the

MDP based on the reward function determined by these reward weights using soft value iteration64 to provide the policy bp. This
adapts the Q value update equation of standard value iteration (Equation 1) to use soft value estimates:

Qðs; aÞ = Rðs; aÞ+g
X
s0
Pðs0js; aÞVsoft

k ðs0Þ (Equation 16)

Where Vsoft
k for a given state s is calculated by applying a form of softmax function to the vector ofQ estimates representing the value

of valid actions from that state:

Vsoft
k+1ðsÞ = softmaxVI

�fQðs; aÞga
�

(Equation 17)

Where the softmaxVI function is defined as follows20 for a vector of values x:

softmaxVIðxÞ = log
X
x

ex
(Equation 18)

The policy bp was determined by using a standard softmax function (Equation 3, with temperature set to 1) to calculate choice prob-

abilities, this is used to derive expected state visitation counts under this policy. Visitation countsD for each state s are initialized at 0,

and the following update is run iteratively for each state s, each action a available from s and each subsequent state s0 that can be

reached by taking action a in state s (as the MDPs used here were deterministic, only one state could be reached through each state

action pair).

Dk+1ðs0Þ = Dkðs0Þ+DkðsÞ,bpða; sÞ,Pðs0ja; sÞ (Equation 19)

Where k represents the current iteration. This is run until convergence, where estimated visitation counts change minimally between

iterations. These state visitation counts can then be used to calculate feature expectations F R̂ according to reward weights bR and

associated policy bp.
F r̂ =

XS
s

DðsÞ,fðsÞ (Equation 20)

Observed feature countsFO are then calculated as the normalized frequency of each feature in the set of observed states visited

by the agent SO:

FO =
1

jSOj
XSO

sO

fðsOÞ (Equation 21)

The vector difference between observed feature countsFO and expected feature countsF r̂ for all features can then be used as an

approximation of the accuracy of the current reward weight estimate.

dF = FO � F R̂ (Equation 22)

This error can then be used to estimate the true reward weights r, where the estimate br is updated on each iteration k of the opti-

mization process through:

Cell Reports 42, 113008, August 29, 2023 19

Article
ll

OPEN ACCESS



brk+1 = brk +ak,dF (Equation 23)

Where ak is a learning rate parameter that updates on each trial according to Equation 6. This is repeated until convergence, or when

a pre-specified maximum number of iterations (set to 1000 here) is reached. Because MaxEnt relies on comparing state visitation

counts within an entire multi-step trajectory following a single policy, it is unable to account for changing features at each time

step. In principle, it would be possible to use single-step trajectories which would allow for movement of the prey at each step, how-

ever this would not provide sufficient information for the algorithm to determine feature weightings as feature counts would be based

on only a few steps at most. Therefore, in the reward weight condition where the threatening agent had a preference for the robot, it is

unable to infer valid reward weights.

Finally, we defined a model-based algorithm that inferred the agent’s reward weights through a process we refer to as hypothesis

testing (HypTest), related to prior work on hypothesis testing in human decision-making15. This approach uses Bayesian inference to

determine the likelihood of a given set of reward weights.

PðweightsjbehaviorÞ = PðbehaviorjweightsÞPðweightsÞ (Equation 24)

In order to estimate the likelihood of behavior given a set of weights (PðbehaviorjweightsÞ), we determine the optimal policy for the

MDP according to these weights and use this to determine the likelihood of each action in a given state. While this can be achieved

using any valid method for computing action probabilities (for example, dynamic programming or tree search) we use the successor

representation (SR)17 to estimate the optimal policy. This is due to its computational simplicity and ability to adapt in response to

changes in reward functions, andwe do not suggest that human participants are necessarily using the SR. The SR is computed using

amatrix of state expectancies (i.e., the discounted likelihood of visiting each state in the future based on the state currently occupied,

based on the objective transition function for the MDP according to a uniform policy), and a vector of rewards available in each state.

Note that we assume full knowledge of the objective transition function and use this to derive expectancies, instead of using a learned

state expectancy matrix as is commonly done when using the SR18,65. In order to estimate action values, we represent the state oc-

cupancy matrix in terms of state action pairs instead of states alone18 (Mðfs;ag;fs0;a0gÞ) and rewards based on rewards associated

with each state-action pair (Rðs;aÞ). Thus, theQ value for each action in the current state could be calculated by taking the inner prod-

uct of the row in M corresponding to that state action pair (Mðfs; ag; f � gÞÞ and the reward rector R:

Qðs; aÞ = Mðfs; ag; f � gÞ3R (Equation 25)

Q values were estimated separately for each step in the agent’s trajectory by repeatedly applying Equation 25 using an updated

reward vector R, accounting for the prey’s movements, such that the resulting reward weights are estimated over the entire set of

observations. To convert Q values to action probabilities, we used a softmax function (Equation 3) with the temperature parameter

set to 0.083 (the mean inferred softmax value in Experiment 3). Following prior work15, we used Markov Chain Monte Carlo (MCMC)

sampling to approximate the posterior distribution over rewardweights using the action probabilities described above combinedwith

a flat generalized beta prior over each reward weight (rescaled to the range [-1, 1]). We used No U-Turn Sampling66, a form of

Metropolis-Hastings algorithm, implemented in NumPyro67 with 2000 samples.We used this approach as an implementation of sam-

pling more generally, and do not suggest that this is the exact algorithm being used by human participants. More generally, although

sampling is one plausible method by which human participants may estimate reward weights, alternative parameter estimation

methods may be equally effective in explaining human behavior. For the purposes of model comparison, we used the mean of

the posterior distributions as a point estimate of the other agent’s preferences. Importantly, because the HypTest algorithm

determines the most likely action at each time step independently of all others (in contrast to MaxEnt, which uses an entire trajectory

according to a single policy), it is able to estimate valid reward weights even in the presence of changing features, such as the robot

feature.

Predictions from the models were scaled to the same range as the subjects’ predictions (-4 to +4) to aid comparison between

models. To determine the best fitting model, we simulated predictions from each model across a range of hyperparameter values

and calculated the adjusted R2 of each model to provide a measure of model fit accounting for complexity.

adjustedR2 = 1 � �
1 � R2

� n � 1

n � p � 1
(Equation 26)

Where n is the number of observations (collapsing across trials and participants) and p is the number of parameters in the model. We

also calculated the Bayesian Information Criterion (BIC) as an additional index of model fit.

Interactive planning models
Participants’ own movements in the task were modelled using a series of planning models. For this purpose, the task was

represented as a 1st-order interactive MDP (i.e., the modelled participant, as prey, accounts for the actions of the agent, as predator,

but does not account for the predator’s expectations of the prey’s actions) where each state is defined jointly by the positions of the

agent and the prey. This results in a large state space (2102 states) which cannot be solved easily by dynamic programming ap-

proaches. Instead, we used Monte Carlo Tree Search (MCTS) as to approximate the optimal policy online, specifically the Upper

Confidence Bound for Trees (UCT) variant68 (for simplicity, we refer to our approach as MCTS). The MCTS family of algorithms
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approximate the optimal policy in a given state using sampling of potential trajectories and gained rewards. The algorithm does not

require an explicit model of the world like dynamic programming solutions but does require the ability to simulate the outcome of

actions. This algorithm is described extensively elsewhere68–70, and here we focus on the specific extensions made to enable inter-

active planning (i.e. planning that accounts for another agent).

In addition to non-interactive MCTS that ignores the presence of the agent, simulating only the prey’s actions and reward gained,

we also extend the algorithm to simulate actions of the agent. This approach is often taken when seeking to optimize behavior in

multi-player games69,70, and in these scenarios the opponent’s policy is also optimized as part of the algorithm (i.e. the opponent’s

simulated actions are selected using the same UCT rule as the player’s). Here, we instead simulate the agent’s actions using two

different approaches to enable us to test hypotheses about the computational mechanisms supporting interactive avoidance plan-

ning. In the first model variant (MCTS-Rand), we determined the agent’s chosen action in the simulation process randomly, assuming

the agent is known to exist, but the prey has no knowledge about its policy. The final model (MCTS-RW) simulates the behavior of the

agent according to its policy which is estimated based on its known reward weights. The model assumes that the agent chooses the

action with the highest Q value, but we also extend the model to simulate the agent’s actions according to a softmax rule with a var-

iable temperature parameter t (Equation 3). This equates to fully interactive planning, where the simulation process accounts for both

the states visited by the prey and the actions of the agent. The agent’s policy was determined using value iteration (Equation 1) using

the objective rewardweights provided to the participant, and the simulation was run for asmany steps as remained at the current trial.

We note here that this process only accounts for the simplest of social inferences, referred to variously as Level 0 or Level 1 theory of

mind, where the prey is accounting for the agent’s actions in its planning, but not accounting for the agent planning based on its own

expectations of the prey’s actions.

As MCTS is a stochastic, simulation-based approach, the likelihood function for these models is not possible to calculate analyt-

ically. Therefore, in order to determine how well these models fit the data, we used Inverse Binomial Sampling (IBS)22 as a robust

method for estimating the likelihood based on repeated runs of the model. We repeated this process 16 times per model to reduce

the variance of the estimate. For analyses estimating the softmax temperature parameter across the sample, we ran the model fitting

procedure across a grid of 10 candidate parameter values between 0 and 1, determining the best fitting value according to its log-

likelihood.

To estimate parameters for the winning planning model, we used simulation-based inference (SBI)71,72. Specifically, we used

neural posterior estimation (NPE) as implemented in the SBI toolbox (https://www.mackelab.org/sbi/), an approach that is able to

estimate parameters of stochastic models in a computationally efficient manner. The SBI procedure involves producing simulated

datasets using the chosen model across a range of parameter values (in our case 20,000 such datasets using parameter values

drawn uniformly at random). Subsequently, a neural network is trained on this data to learn a nonlinear function mapping observed

behavior to the parameters that generated it. By then applying this network to subjects’ observed behavior, we were able to estimate

parameters of the model for individual subjects.

We note that this constitutes a deviation from our preregistered analysis plan, which originally indicated that we would estimate

softmax temperature values using a grid search procedure. However, advances in model-fitting since writing the preregistration

allowed us to additionally estimate a threat sensitivity parameter to determine whether variation in behavior was best explained

by individual differences in inferred unpredictability of the predator or threat sensitivity. The additional complexity of this analysis

would make a grid search estimation approach less computationally feasible, but it is feasible with SBI.

Model and parameter recovery
For each of our modelling analyses, we conducted model and parameter recovery analyses to determine how accurately we were

able to distinguish between candidate models and to estimate the values of parameters within these models. All results from these

analyses are included in Supplementary Material.

For the action prediction models, we generated 40 simulated datasets per model with parameters drawn from uniform distribu-

tions. For each model, we calculated the proportion that were best fit by each of the candidate models. We also calculated Pearson

correlations between the parameter values used to simulate the data and those estimated based on the resulting simulated datasets.

For the inverse reinforcement learning models, we generated 150 simulated datasets from each model and estimated model fit for

each candidate model across these datasets. We also estimated the stability of these results by repeating the procedure on

randomly-selected subsets of 50 simulated datasets and then calculating the proportion of datasets in which each model was cho-

sen as the best fitting model.

For the planning models, we generated 80 simulated datasets for each model. We then fit each candidate model to this simulated

data, calculating the proportion of simulated datasets best fit by each model.

ADDITIONAL RESOURCES

The methodology and hypotheses for the experiments reported here were preregistered on the Open Science Framework (https://

osf.io/bgr4v).
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