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Consider a typical day-to-day social interaction between 
one speaker (Speaker 1) and another speaker (Speaker 
2; Fig. 1). Speaker 1’s actions depend on the identity 
of Speaker 2 (e.g., the boss or intern), the context (e.g., 
work or a bar), and Speaker 1’s emotional state (e.g., 
nervous or excited). During these interactions, a com-
plex exchange occurs: Speaker 1 and Speaker 2 play a 
game of social chess, in which Speaker 2 infers what 
Speaker 1 is thinking or intending, what Speaker 2 
believes Speaker 1 believes Speaker 2 is thinking, and 
the social norms that indicate what Speaker 2 should 
be thinking. Speaker 1 and Speaker 2 continually inte-
grate multiple signals while attempting to produce 
coherent responses. These signals are conveyed via 
multiple channels, such as vocal intonation, posture, 
expression, and eye direction, and the symmetry of this 
information determines the basis for understanding oth-
ers. Speaker 1 and Speaker 2 may hide the contents of 
undesirable thoughts from one another or may suggest 
the existence of beliefs while strategizing to promote 
a desired image. These and possibly many other paral-
lel processes initially occur subconsciously on the mil-
lisecond timescale, are subject to conscious adjustments, 

and involve complex integration and accumulation of 
multiple dynamic channels of information that result in 
the emergence of coherent social behavior.

For two decades, research in the field of social neu-
roscience has mapped out a set of consistent brain 
regions involved in social cognition (Frith & Frith, 2010; 
Stanley & Adolphs, 2013). To date, more than a dozen 
discrete brain areas have been implicated in various 
aspects of social cognition (Fig. 2). Social processing 
occurs through coalitions of structures involved in sen-
sory aspects of stimuli (e.g., fusiform face area, or FFA, 
superior temporal sulcus, or STS), emotional status of 
the social stimulus (e.g., amygdala), inferences concern-
ing internal states and motives of agents (e.g., temporal 
parietal junction, or TPJ, ventromedial prefrontal cortex, 
or vmPFC), and social context (e.g., temporal pole). 
Medial prefrontal cortex (mPFC) may play a special role 
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in social cognition, guiding, computing, and directing 
moment-to-moment aspects of social interaction. How-
ever, no theory currently exists to explain how these 
social brain areas work together to produce coherent 
social discourse.

We propose a dynamic-integration theory (DIT) to 
describe the social brain. DIT proposes that the neural 
systems supporting social cognition reflect dynamic 
integration of inferential and sensory social informa-
tion. The theory is based on three key elements. First, 
social behavior involves complex interaction between 
multiple neural circuits operating in parallel, involving 
extensively connected brain hubs, and social tuning 
reflects integration of dynamic interactions among these 
circuits toward metastable states (e.g., context-dependent 
stability that persists longer than most states but is 
shorter than a stable state) that map onto those of an 
interaction partner. Second, hyperconnected brain hubs 
play a role in orchestrating network flexibility that 
underwrites adaptive behaviors. Third, generative mod-
els govern a dynamic prediction process using internal 

knowledge, states, motivations, and goals that integrate 
with external cues to support context-apposite interac-
tion, including the generation of inferences used to 
respond during social discourse. We move beyond the 
discrete mapping of the social brain to an understand-
ing of how the network machinery might work during 
real-time social interactions.

Toward a DIT of the Social Brain

The social brain accumulates and integrates dynamic 
signals in real time through use of hyperconnected (the 
capacity to functionally connect with a significant num-
ber of nodes), flexible nodes with the capacity to 
dynamically reconfigure into different circuits. Activity 
over these circuits relays signals that produce time-
sensitive and appropriate social behaviors. We high-
light two problems the brain must overcome during 
real-time social discourse: (a) integration of internal 
states and external sensory information and (b) rapid 
social tuning.

Fig. 1. Representation of components and processes during a conventional social exchange. Speaker 1 (S1), the 
sender, provides multimodal information in the form of sensory cues such as intonation, language, intensity, timing of 
verbal exchange and movements, posture, and gaze as signals. Speaker 2 (S2), the receiver, must recruit perceptual, 
inferential, learning, and other domain-general systems to generate and operate on an accurate interpretation of the 
signals. External influences such as context and internal influences, including goals and affective and motivational 
states, modulate processing in domain-general and social-cognitive systems.
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Combining sensory and inferential 
systems

Social communication and perception require robust rec-
ognition and inferential systems, including FFA and STS, 
to integrate often subtle and disparate cues. The social 
sensory landscape is multimodal and sensitive to facial, 
vocal, postural, and gestural cues that may generate dif-
ferent interpretations depending on temporal occurrences 
during social interaction, depending on context, and 
across cultures (e.g., nodding vs. shaking of the head to 
indicate approval). Humans developed finely tuned 
cognitive-perceptual-inferential systems to discern “dif-
ferences that make a difference” (Tononi, 2012, p. 293) 
and extract meaning from information by integrating 
external signals in the environment with internal knowl-
edge, internal states, and ongoing predictions to form an 
integrated representation (Tononi, 2012; Tononi & Koch, 
2015). This ability depends on highly sensitive and tuned 

neural machinery, including TPJ, vmPFC, posterior cin-
gulate cortex (PCC)/precuneus, and temporal pole, that 
can efficiently and instantaneously categorize information 
for adaptive use in ongoing social interactions via mental-
izing and simulation. Our model predicts that the integra-
tion of sensory information with internal representational 
and predictive models leads to convergence on a set of 
prioritized network transitions that evolve into a set of 
metastable states as an individual learns the social envi-
ronment. Consistent network transition trajectories in 
response to similar cues and social situations produce 
reliable, context-appropriate behavioral output.

Social tuning, shared reality,  
and coherent social discourse

Effective social interaction involves communication of 
goals and motives that can be quickly and accurately 
understood (i.e., the individuals are “on the same 
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Fig. 2. Brain networks proposed to underlie separate processes that characterize the social brain, including affective, simula-
tion, empathy, and mentalizing processes (a), and overlap of social networks with nodes of the default mode network (DMN) 
during active social cognition, contemplation of social interaction, and theory-of-mind processing (b). In (b), colors represent 
activation in the labeled networks. ICA = independent component analysis. Panel (a) reprinted with permission from Stanley 
and Adolphs (2013) and panel (b) reprinted with permission from Mars et al. (2012).
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page”). It also depends on social tuning, that is, the 
convergence of attitudes or more broadly an agreeable 
focus of attention (Shteynberg, 2010). Tuning is a pre-
requisite for achieving shared reality, a state in which 
individuals are motivated and successful in achieving 
shared and meaningful understanding, which should 
produce correlations with respect to synchronization 
or coupling of neuronal firing between such individu-
als. Shared-reality theory hinges on the perception of 
mutual sharing and the ability to communicate an expe-
rience or information about a target via motivationally 
aligned internal states (Echterhoff, Higgins, & Levine, 
2009). Individuals with greater neuronal synchroniza-
tion during shared reality are predicted to share more 
similar memories of events and detail, compared with 
individuals with less synchronization (Chen et al., 2017). 
Shared reality reinforces the confidence in perceptions 
and the underlying reality of both the social and physical 
worlds, leading to an increased likelihood of cohesive 
social interactions (McNally, Brown, & Jackson, 2012).

Three Principles of a DIT  
of the Social Brain

Social hubs as hyperconnected networks

Anatomical models describing the social brain reveal 
several regions that overlap with the default mode net-
work (DMN), forcing a reconsideration of the functions 
of these nodes. The DMN is traditionally described as 
a network active in the absence of performing tasks. 
Some of these extensively connected overlapping hubs 
include PCC; precuneus; retrosplenial cortex; temporal 
pole (TP); inferior parietal lobule (IPL), including TPJ; 
and mPFC, many of which are active during mind wan-
dering, self-processing, and examining the contents of 
episodic memory (Corbetta, Patel, & Shulman, 2008; 
Mars et al., 2012; Schilbach, Eickhoff, Rotarska-Jagiela, 
Fink, & Vogeley, 2008). These social hubs reduce their 
connectivity when internal attention is reoriented 
toward external objects or events. Densely connected 
nodes may direct or govern information gating and flow 
by tuning oscillatory activity, coupling field potentials, 
and establishing channels of synchrony (Fingelkurts & 
Fingelurts, 2017). The brain exploits phase locking, or 
synchrony, to efficiently communicate information 
across the brain. Synchrony is also observed between 
individuals, and is a reliable predictor of successful tun-
ing (Stephens, Silbert, & Hasson, 2010). PCC/precuneus, 
mPFC, and IPL are strongly connected, but less con-
nected with hippocampus and TP. Precuneus/PCC 
stands alone as the hub that interacts with all major 
DMN nodes, situating it as a major integrative center of 
high-order processing and a potential conductor of 

neural traffic associated with self-related processing 
and subjective self-awareness (Fransson & Marrelec, 
2008). Precuneus/PCC forms a network with the amyg-
dala associated with emotional states, which bear on 
the perceptions and orientation of an agent toward 
other social agents and may significantly drive the con-
tent and outcome of social interaction (Fang et  al., 
2013).

The tendency of these circuits to be active in social 
contexts, to display dense interconnectivity, and to shift 
toward a frontal bias (as found by Mars et al., 2012) 
suggests that intrinsic dynamics in the human brain are 
skewed toward considerations of the self and, in par-
ticular, self–other relations. Processing underwriting 
these capabilities is complex, especially in humans, 
with differences in cortical properties, including neu-
ronal density and connectivity strength, corresponding 
to variation in high-level cognitive processes and social 
understanding (Lewis, Rezaie, Brown, Roberts, & 
Dunbar, 2011). TPJ and inferior parietal areas are critical 
components of networks that facilitate links and under-
standing between the signaler and the environment, 
given these regions’ putative role in mentalizing, action 
understanding, and interpretation (Ramsey, Cross, & 
Hamilton, 2011).

State transitions: context, states,  
and flexibility

Signals, contexts, and motivational and affective states 
determine the orientation to social information and 
guide organization and tuning of neural activity. These 
processes result in a sequence of states that promote 
flexible social behaviors (Fig. 3). Accurate real-time 
prediction requires dynamic integration of multimodal 
information that is fed into an efficient simulation sys-
tem capable of generating swift representations avail-
able for conscious inspection (e.g., to form hypothetical 
scenarios and counterfactuals to aid in developing opti-
mal responses and enhance learning rates). Under this 
framework, context dictates the appropriateness of the 
same behavior in different circumstances, for example, 
inhibiting physical contact during a business meeting 
while facilitating contact at social events.

Brain-state transitions require goal-oriented organi-
zational principles that drive transition probabilities 
into transient, metastable states in network space. Some 
researchers have proposed psychological dimensions 
that map onto brain networks—such as valence, social 
domain, human specific, arousal, and agentic versus 
affiliative—and subdimensions including social warmth, 
competence, aggressiveness, self-focus, and empathy, 
among others (Fiske, Cuddy, & Glick, 2007; Grodin & 
White, 2015; Tamir, Thornton, Contreras, & Mitchell, 



Dynamic Brain Networks and Social Behavior 5

2016). Dimensional theories do not incorporate effects 
of dynamic contextual factors, which may contribute to 
state transitions, providing selection constraints on pos-
sible states. The organizational principals that govern 
adaptive and flexible transitions derive from relation-
ships between an adaptively flexible system capable of 
processing a diverse range of inputs and affordances 
perceived in the environment subject to constraints 
imposed by available processing resources and current 
goals (Smith & Thelen, 2003).

Social interactions demand a distinct kind of adaptive 
flexibility from nonsocial complex cognitive operations 
as a result of the nature of the inputs processed. Predict-
ing (often irrational) human beings is more complex than 
predicting physical (nonhuman) systems that consis-
tently obey the same rules and the laws of physics, thus 
the processes necessary to successfully interact with 
human beings are more complex. We propose the added 
layer required to account for motivations and intentions 
of agents recruits additional nodes not recruited for other 
processes such as complex nonsocial decision making. 
Further, the inability to access the contents of other 
minds, the enormous state space of possible configura-
tions and real-time reconfiguration of brain states pres-
ents a prediction challenge unique to social interaction. 
However, we propose nothing magical about the prin-
ciples underlying social processing, as the flexible hub 
account has been stipulated for language (Fedorenko & 
Thompson-Schill, 2014) and cognition (Cole et al., 2013), 
more generally suggesting that certain principles are 
conserved across disparate functions.

Generative models, prediction,  
and learning in the social brain

Contemporary accounts of social learning increasingly 
refer to model-based processes, which assume explicit, 
cognitive understanding of the structure and causal 

mechanisms of an environment (Dunne, D’Souza, & 
O’Doherty, 2016). Recent evidence indicates that social 
learning is mediated by different neuromodulatory sys-
tems, which interact to improve the accuracy of a cog-
nitive model. These systems contribute to hierarchical 
updating processes by representing prediction errors 
used by higher order cortical areas to assess ongoing 
binary true/false judgments and comprehensive traits 
such as trustworthiness (Diaconescu et al., 2017). While 
the model-based account is more effective than compet-
ing constructs, in its conventional form it will likely fall 
short as an adequate model when applied to ecological 
social situations. This is because internal states, includ-
ing emotion, motivation, and ongoing processing more 
generally, are not always explicitly modeled.

We propose that model-based social learning can be 
described in terms of a generative model. Generative 
models can generate data and are based on Bayesian 
principles, updating a model of joint probabilities, pos-
sible outcomes, and input using a hierarchical and itera-
tive process. Under this formulation, predictive coding is 
based on prediction errors signaled and integrated back 
into the model as part of a dynamic and flexible recali-
bration process to achieve greater accuracy. The model 
takes into account episodic information and is continu-
ously updated on the basis of observed contingencies 
and exploratory outcomes via simulation. Humans are 
capable of “simulated prediction” in the absence of exter-
nal sensory input, instead using internally defined inputs 
to generate novel outputs that in humans can be con-
sciously inspected, manipulated, and fed back into gen-
erative models to make different meta simulated 
predictions. These predictions aid in the uniquely difficult 
task of online social decision making.

Social interactions are essentially social decision-
making problems. These decision processes differ from 
nonsocial decision processes in that the consequences, 
or outcomes are of a different character than decisions 

Fig. 3. Reconfiguration of network modules: schematic illustrating how patterns of connec-
tivity can change over time as someone learns. Each circle represents a node, and different 
node colors indicate membership to different modules. For example, network modules can 
separate (as the orange and yellow modules do) or coalesce (as the blue and yellow modules 
do). Reconfiguration can also occur at the level of single nodes, which might initially be part 
of one module, and then change to be part of another module (as indicated by the change 
in the node from the second to third frames, which starts off being affiliated with the orange 
module and ends being affiliated with the yellow module). Figure adapted with permission 
from Bassett and Mattar (2017).
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for which the certainty of outcomes may near unity. For 
example, deciding which car to buy among several 
choices involves explicit calculations that yield specific 
and consistent results. If we provide the same inputs 
into the decision-making problem today, tomorrow, and 
the next day, we will invariably arrive at the same 
answer. This is not necessarily true about social interac-
tion. The same behavioral and perceptual inputs (e.g., 
a similar interaction with another agent) may probabi-
listically yield a range of responses, resulting in a more 
complex decision system that involves moving targets 
for which the brain attempts to compensate. The two-
way interaction with another agent (a) requires real-
time updating of value based on feedback and (b) a 
mechanism to account for and dynamically predict the 
effects one’s behavioral output has on another agent.

How Do Dynamic Interactions 
Between Social Brain Circuits Tune 
Social Interaction?

What are the fundamental mechanisms by which the 
brain dynamically reconfigures to create social mean-
ing? We suggest that social tuning depends on syn-
chrony among interaction partners underwritten by 
dynamic and flexible interactions between large-scale 
neural circuits, a process made mathematically concrete 
using the emerging conceptual framework of network 
neuroscience (Bassett & Sporns, 2017). In this view, 
brain regions are treated as nodes in a graph, connected 
by edges that encode structural links (via white matter) 
or functional connections (estimated by similarity in 
time-varying patterns of activity measured by functional 
MRI, or fMRI; Bullmore & Bassett, 2011). A common 
and highly reproducible finding in these network rep-
resentations of brain structure and function is the pres-
ence of network modules: groups of brain regions that 
tend to be connected to one another in fMRI-measured 
functional circuits that perform specific types of pro-
cesses. Examples of network modules present at rest 
include the visual, auditory, motor, default mode, 
fronto-parietal, cingulo-opercular, salience, and dorsal/
ventral attention systems. Network modules present 
during tasks can differ from those present during rest, 
and indeed, different tasks can be associated with dif-
ferent levels of integration or segregation between 
resting-state modules (Mattar, Cole, Thompson-Schill, 
& Bassett, 2015).

Recent work has extended this general notion to 
track brain networks over time, as patterns of connec-
tivity change in response to the external world 
(Medaglia, Lynall, & Bassett, 2015) or to internal reflec-
tions (Hutchison et al., 2013). The mathematics of tem-
poral networks is used to describe the evolution of 
these networks (Holme & Saramaki, 2012; Mucha, 

Richardson, Macon, Porter, & Onnela, 2010). Network 
flexibility is mathematically defined as the frequency 
with which brain regions switch allegiance to different 
network modules, or putative cognitive systems, by 
changing their pattern of fMRI-measured functional 
connections (Bassett et al., 2011). Individual differences 
in network flexibility are associated with attention 
(Shine et  al., 2016), working memory (Braun et  al., 
2015), learning (Bassett et al., 2011; Bassett et al., 2013), 
linguistic processing (Chai, Mattar, Blank, Fedorenko, 
& Bassett, 2016), and mood, arousal, and fatigue (Betzel, 
Satterthwaite, Gold, & Bassett, 2017) and can be modu-
lated by task (Telesford et al., 2016), drugs, and disease 
(Braun et al., 2016). Network flexibility is also positively 
correlated with individual differences in cognitive flex-
ibility (Braun et al., 2015), suggesting a potential role 
in the state transitions that promote adaptive social 
behaviors.

Intuitively, a flexible network is capable of integrat-
ing complex information in a dynamic manner to enable 
adaptive functions. This capability, underwritten in part 
by neural reuse, or the idea that a brain node or region 
participates in multiple functions depending on context 
and availability, is critically necessary for successfully 
navigating the complexities of social interactions 
(Anderson, 2010). Across nonsocial task contexts, flex-
ible regions are largely located in association areas 
(particularly in frontal cortex) and subcortical structures 
(Bassett et al., 2011) thought to be critical for large-scale 
cognitive computations beyond simple task perfor-
mance (Bassett et al., 2013). Flexible regions may form 
a dynamic “periphery” of domain-general areas that 
change patterns of coactivation with other regions 
depending on task demands, while rigid regions form 
a dynamic “core” of domain-specific areas that consis-
tently coactivate with each other across tasks (Fedorenko 
& Thompson-Schill, 2014), While these approaches and 
theories have yet to be applied to neuroimaging data 
acquired during the performance of tasks requiring 
social cognition, they offer simple and appropriate 
putative mechanisms for brain dynamics supporting 
social meaning and tuning, which could be directly 
tested in future experiments.

Concluding Remarks

The brain is not a passive processing machine like a 
computer waiting for input but rather an ongoing simu-
lating, searching, and predicting machine that refines 
its structural and functional architecture to optimize 
learning and predictive processes according to envi-
ronmental demands. We propose that during social 
interaction, neural circuits must be dynamic, predictive, 
and contextually nuanced. They must include core sys-
tems and processes including motivation systems, 
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metacognitive awareness, the ability to signal internal 
states, and the ability to guide decision processes that 
determine when to socially tune or antitune. The inputs 
to these systems shape its development and optimiza-
tion parameters, and include cultural, familial, and 
interpersonal environments and relationships that act 
as strong filters with respect to social information pro-
cessing. Specifically in humans, social reasoning and 
circuit recruitment appears to be context dependent: 
whether or not the subject of an interaction possesses 
or is perceived to possess relevance for current or 
future social actions (Carter, Bowling, Reeck, & Huettel, 
2012).

Gaining a better understating of the dynamics of the 
social brain might lead to a further understanding of 
the social impairments observed in autisms disorders. 
For example, central-coherence theory proposes that 
people diagnosed with autism tend to fragment the 
world into small parts and “cannot see the forest for 
the trees” (Frith, 1989; Happe, 1999). According to DIT, 
the central hubs of connectivity and stable nodes are 
different from those of normal individuals, manifesting 
greater coherence within local nodes, providing 
enhanced processing within the local domains such as 
spatial, numerical, and abstract computation, at the cost 
of the ability to efficiently integrate information from 
other more remote nodes to generate (e.g., theory of 
mind). The inability to update in proportion to informa-
tion content results in impairments in cognitive flexibil-
ity manifest as difficulty in shifting resources and 
adapting to dynamic environments that require coordi-
nated activity in attention, representation, and planning 
circuits (Dajani & Uddin, 2015; Yahata et al., 2016). Too 
much flexibility as observed in schizophrenia, charac-
terized by inappropriate or abnormal network connec-
tivity and switching dynamics during working memory, 
results in aberrant interpretation of both external and 
internal inputs and inability to exert cognitive control, 
leading to inappropriate social (and other) behavioral 
profiles (Braun et al., 2016).
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