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Theoretical models distinguish between neural responses 
elicited by distal threats and those evoked by more immedi-
ate threats1–3. Specifically, slower ‘cognitive’ fear responses 
towards distal threats involve a network of brain regions 
including the ventral hippocampus (vHPC) and medial prefron-
tal cortex (mPFC), while immediate ‘reactive’ fear responses 
rely on regions such as the periaqueductal grey4,5. However, 
it is unclear how anxiety and its neural substrates relate to 
these distinct defensive survival circuits. We tested whether 
individual differences in trait anxiety would impact escape 
behaviour and neural responses to slow and fast attacking 
predators: conditions designed to evoke cognitive and reactive 
fear, respectively. Behaviourally, we found that trait anxiety 
was not related to escape decisions for fast threats, but indi-
viduals with higher trait anxiety escaped earlier during slow 
threats. Functional magnetic resonance imaging showed that 
when subjects faced slow threats, trait anxiety positively cor-
related with activity in the vHPC, mPFC, amygdala and insula. 
Furthermore, the strength of functional coupling between two 
components of the cognitive circuit—the vHPC and mPFC—
was correlated with the degree of trait anxiety. This suggests 
that anxiety predominantly affects cognitive fear circuits that 
are involved in volitional strategic escape.

Anxiety is often described as an enduring, conscious state of 
apprehension. Theoretical work6–8 proposes that anxiety is an emo-
tional state independent of fear, which is instead evoked when a 
threat is increasingly proximal, and which ought to be minimally 
influenced by the anxiety state of the organism3,9. While this is 
generally well recognized in the non-human animal literature, 
researchers in the field of human affective neuroscience have paid 
relatively little attention to the question of whether anxiety and fear 
have different associated neural circuitry, and under what condi-
tions anxiety might influence defensive behaviours in ecological 
scenarios. Moreover, recent advances have distinguished different 
classes of defensive responses that rely on distinct neural circuits, 
and which may complicate the theoretical relationship between fear 
and anxiety4,5.

Non-human animal research has shown that anxiety states 
involve a well-defined set of neural circuits10. The ventral hippocam-
pus (vHPC) and medial prefrontal cortex (mPFC) are of particular 
interest as they have repeatedly been shown to be recruited during 
the regulation and representation of anxiety-provoking features of 
the environment11–14. The vHPC has input into the mPFC, and it 
appears to be the interaction between these regions that drives anxi-
ety-related behaviours12. More recently, CA1 cells in the vHPC have 
been shown to exhibit stable representations of anxiety-provoking 
environments, and these cells drive avoidance behaviours15.

In humans, functional magnetic resonance imaging (fMRI) has 
been employed in conjunction with ‘active escape’ paradigms, the 

goal of which is to evade an artificial predator with the capacity to 
chase, capture and shock the subject. Studies have shown that when 
an artificial predator is distant, increased activity is observed in the 
ventromedial prefrontal cortex (vmPFC)4. However, as the artificial 
predator moves closer, a switch to enhanced activation in the mid-
brain periaqueductal grey (PAG) is observed4. More recently, our 
laboratory developed an escape decision task to demonstrate a simi-
lar ‘cognitive’ and ‘reactive’ fear differentiation of defensive survival 
circuits, by showing that fast escape decisions are associated with 
activity in the PAG5 (a region shown previously to be involved in 
reactive flight4), while slower escape decisions rely on the vHPC, 
posterior cingulate cortex and mPFC5 (a circuit implicated in 
behavioural flexibility and internal risk assessment16).

The vHPC–mPFC anxiety circuit therefore overlaps with the 
cognitive fear circuit recruited during these slower escape deci-
sions3, but appears to be independent of reactive fear regions that 
are involved with threat under limited time constraints. In general, 
these reactive fear areas (for example, PAG) have limited interac-
tion with higher-level cortical brain regions, thus are unlikely to 
be implicated in anxiety. Therefore, it is possible that while anxiety 
plays no role during imminent threat (when reactive fear circuits 
are recruited), it may be important within cognitive fear circuits, 
and subsequently affect defensive behaviour in the face of less 
imminent threats.

To provide evidence for this possibility, a critical question is 
whether individual differences in levels of trait anxiety selectively 
affect cognitive fear circuits during defensive decision-making, or 
whether reactive fear circuits are also influenced by the trait anxi-
ety of the individual. Moreover, it is equally important to determine 
whether there are commensurate changes in survival behaviours 
and decision-making as a result of differences in trait anxiety, as 
would be expected if anxiety has an ethological origin6.

To address these questions, we reanalysed behavioural and neu-
ral data collected in our previously published study5, along with 
previously unanalysed trait anxiety data (the Spielberger State-Trait 
Anxiety Inventory Form Y (STAI-Y)17). In each trial of the behav-
ioural task, participants passively earned money while they encoun-
tered virtual predators of three colours, each representing different 
attack distances (Fig. 1a). These attack distances were drawn from 
Gaussian distributions that were unique to the particular predator 
type. Fast attack predators (that is, early attacking) were character-
ized by the virtual predator quickly switching from slow approach 
to fast attack velocity, therefore requiring the subject to make quick 
escape decisions. In contrast, slow attack predators (that is, late 
attacking) slowly approached for longer time periods, resulting 
in larger buffer zones and more time to contemplate escape. It is 
important to emphasize that ‘fast’ and ‘slow’ here describe the tim-
ing of the predator attack, not the speed of the predators. The goal 
of the task was to try to successfully escape, while at the same time 
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maximizing the amount of money earned by fleeing as late as pos-
sible (that is, at the shortest distance from the predator, or flight 
initiation distance (FID)).

Subjects performed this task while undergoing fMRI to assess 
the relative contributions of the ‘reactive fear’ and ‘cognitive fear’ 
networks to their escape decisions, and whether behaviour or brain 
activity in these circuits varied as a function of trait anxiety. Given 
the theoretical and neural differentiation between reactive fear and 
cognitive fear, we hypothesized that under conditions of slow preda-
tor attack, individuals with high trait anxiety would show prefer-
ential activity in the cognitive fear circuitry (relative to individuals 
with low trait anxiety), but no differences in the reactive fear cir-
cuitry. We also hypothesized that individuals scoring higher in trait 
anxiety would make earlier escape decisions, but only when there 
was sufficient time to assess the threat.

To test the hypothesis that trait anxiety would affect escape deci-
sions, we estimated a mixed-effects linear regression model with 
subjects’ median FIDs as the dependent variable and predator type 
and STAI-Y score as the independent variables (Table 1). Relative 
to the fast predator type, we observed the expected effects of the 
medium (t(2, 1,592.97) = −8.01; P < 0.001; regression coefficient 
β = −17.88; 95% confidence interval (CI) = −22.25 to −13.51) and 
slow (t(2, 1,592.97) = −23.12; P < 0.001; β = −52.22; 95% CI = −56.65 
to −47.79) predator types. There was no significant main effect of 
STAI-Y score (t(1, 25.23) = 0.09; P = 0.925; β = 0.01; 95% CI = −0.21 
to 0.19), nor any significant interaction between STAI-Y score and 
the medium predator type (t(2, 1,593.32) = 1.4; P = 0.908; β = 0.07; 
95% CI = −0.03 to 0.17). However, we observed a significant  

interaction effect between the slow predator type and STAI-Y score 
(t(2, 1,593.32) = 10.94; P < 0.001; β = 0.57; 95% CI = 0.47 to 0.67), 
suggesting that trait anxiety and FID were related, but only for the 
slow predator condition (see Fig. 1c).

It is important to note that participants had a larger time window 
in which to respond in the slow predator condition; therefore, the  
variance in escape distances was not equal across predator types. 
For details, as well as a control analysis taking into account the 
differences in variance, see the section ‘Variability in flight ini-
tiation distance’ in the Supplementary Information. Importantly, 
controlling for these variance differences resulted in no changes 
to our findings. We also collected data on the behavioural inhi-
bition/activation scale. For an analysis of this scale, see the sec-
tion ‘Behavioural inhibition and flight initiation distance’ in the  
Supplementary Information.

Note that because participants were given electrical stimulation 
when they were caught by the virtual predator, to obviate inter-
ference, it was necessary to exclude these trials from the imaging 
analysis reported below. For consistency, the behavioural analysis 
above also excluded unsuccessful escape trials. However, unsuccess-
ful escape trials still contain information about subjects’ tolerance to 
predator distance. To ensure that the analyses above were not biased 
by this possibility, we adopted a technique from survival analysis, 
which allowed us to take into account the unsuccessful trials as 
censored data. To appropriately prepare the data for this analysis 
(which is more commonly used to model time-based responses 
rather than distance-based responses), we transformed the depen-
dent variable of FID by subtracting FID from the maximum FID, 
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Fig. 1 | FiD experiment and behavioural results. a, Predator escape setup. In each trial, participants were presented with a cue indicating the predator 
type. The predator would appear on the left side of the runway and slowly move towards the participant (green triangle). Participants passively accrued 
money while they waited, but at any time could press a button to begin their escape towards the exit. The predator would speed up (attack) at a random 
distance drawn from the respective Gaussian distributions shown above. If participants were caught by the predator, they would receive a mild electric 
shock and lose any money accrued on that trial. b, Kaplan–Meier survival curves for each predator type as a function of predator proximity. Curves reflect 
pooled data from all subjects (n = 27). Shaded areas represent 95% CIs. c, FID for each predator type as a function of STAI-Y score. Each dot corresponds 
to a single subject’s median FID in one condition (n = 27). Dashed lines show the linear fit to the data. Shaded areas indicate s.e.
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then normalizing this by the maximum FID. This new dependent 
variable can be thought of as predator proximity, expressed as a  
percentage. The Kaplan–Meier estimated survival curves (that is, 
the probability of waiting as a function of predator proximity) for 
each predator are shown in Fig. 1b.

To control for the potential effect of data censoring, we repeated 
the analysis of behavioural data using a mixed-effects Cox regres-
sion model on the probability of flight responses over time, which 
took into account predator type and participant heterogeneity.  
This model again revealed the expected effects of the medium 
(z = −3.34; P < 0.001; β = −0.98; 95% CI = −1.55 to −0.4) and slow 
(z = −10.43; P < 0.001; β = −3.09; 95% CI = −3.67 to −2.51) preda-
tor types. It also showed no significant main effect of STAI-Y 
score (z = −1.07; P = 0.29; β = −0.01; 95% CI = −0.04 to 0.01), nor 
a significant interaction between STAI-Y score and the medium 
predator type (z = 1.84; P = 0.066; β = 0.01; 95% CI = <0.01 to 
0.03). Importantly, it also again revealed a significant interaction 
effect between the slow predator type and STAI-Y score (z = 6.74; 
P < 0.001; β = 0.05; 95% CI = 0.03 to 0.6). This effect had a hazard 
ratio of 1.05 (95% CI = 1.03 to 1.06), equivalent to a 5% increase in 
the chance of fleeing per unit increase of STAI-Y.

The results above provide clear evidence that trait anxiety influ-
ences subjects’ propensity to escape earlier when given enough time 
to prepare an escape. However, it is unclear whether this should 
negatively affect their economic performance in the task. To test 
this, we performed a two-way repeated-measures analysis of vari-
ance (ANOVA), with predator type and STAI-Y score as inde-
pendent variables and subjects’ cumulative total earnings as the 
dependent variable. Given that subjects could earn more money in 
the slow predator condition, we first standardized reward scores for 
each predator type. There was no significant effect of predator type 
on standardized earnings (F(2, 52) = 0.34; P = 0.667; Greenhouse–
Geisser correction factor, ε = 0.81; partial eta-squared effect size 
ηp

2 = 0.08; 90% CI = 0 to 0.07), but we observed a significant main 
effect of STAI-Y score on total earnings (F(1, 26) = 4.32; P = 0.048; 
ηp

2 = 0.9; 90% CI = <0.01 to 0.34), suggesting that subjects with 
higher STAI-Y scores had poorer economic performance in the 
task, across all predator types. There was no interaction effect of 
STAI-Y score and predator type (F(2, 52) = 0.36; P = 0.656; ε = 0.81; 
ηp

2 < 0.01; 90% CI = 0 to 0.07).
Although economic gain is an index of performance in this 

task, it could be argued that the more ecologically important per-
formance measure is escape success. Notably, subjects’ economic 
performance and proportion of escape trials were not significantly 
correlated across all predator types (t(26) = 0.47; P = 0.643; r = 0.09; 
95% CI = −0.29 to 0.45), nor within the slow predator condition 
(t(26) = –1.67; P = 0.108; r = –0.31; 95% CI = –0.61 to 0.07). To test 
whether trait anxiety was related to how frequently subjects suc-
cessfully escaped the predators, we again performed a two-way 
repeated-measures ANOVA, with predator type and STAI-Y score 

as independent variables and the proportion of successful escape 
trials as the dependent variable. While there were no main effects 
of STAI-Y score (F(1, 26) = 0.23; P = 0.633; ηp

2 < 0.01; 90% CI = 0 to 
0.13) or predator type (F(2, 52) = 1.89; P = 0.175; ε = 0.53; ηp

2 = 0.07; 
90% CI = 0 to 0.17), the ANOVA revealed a significant interaction 
effect between STAI-Y score and predator type (F(2, 52) = 4.46; 
P = 0.031; ε = 0.68; ηp

2 = 0.15; 90% CI = 0.02 to 0.27). Simple effects 
analyses (one-way repeated-measures ANOVAs within each preda-
tor type) revealed a significant effect only for the slow predator type 
(F(1, 26) = 5.49; P = 0.027; ηp

2 = 0.17; 90% CI = 0.01 to 0.37), but 
not for the fast (F(1, 26) = 2.12; P = 0.158; ηp

2 = 0.08; 90% CI = 0 to 
0.26) or medium predator (F(1, 26) = 0.39; P = 0.536; ηp

2 = 0.01; 90% 
CI = 0 to 0.15). This suggested that, similar to the analysis of FID 
above, STAI-Y score was positively related to escape success in the 
slow predator condition, with no evidence for a relationship within 
the fast or medium predator condition. Overall, these results show 
that subjects with higher trait anxiety tended to more successfully 
escape predators, but that this also negatively impacted how much 
money they earned in the task (a summary of performance mea-
sures can be found in Supplementary Table 2).

Next, we tested our hypothesis that only during slow attack would 
we see a positive correlation between trait anxiety and activity in the 
cognitive fear circuitry. For this analysis, we excluded unsuccessful 
escape trials due to the interference of the electric stimulation on the 
blood-oxygen-level-dependent (BOLD) response (mean numbers 
of trials excluded were 6.88, 3.71 and 3.37, per subject, out of 23, 24 
and 25, for the fast, medium and slow predator types, respectively). 
We focused on the 2 s before participants’ flight initiation responses, 
which allowed us to examine the neural activity in anticipation of 
the escape response (detailed methodology of the base fMRI analysis 
can be found in ref. 5). First, we contrasted the slow-attacking preda-
tor condition with the fast-attacking predator condition. Then, we 
used participants’ STAI-Y scores as second-level regressors for this 
contrast, such that any significant increase in activity would indicate 
positive modulation by trait anxiety for the slow predator condition 
(for a similar analysis using contrasts for the slow and fast predators 
against a control condition, see Supplementary Information).

After thresholding and correction, we observed significant 
BOLD responses in regions including the amygdala, hippocampus, 
vmPFC and midcingulate cortex (Fig. 2a and Table 1). This was con-
sistent with our hypothesis, and supported the behavioural findings 
whereby the STAI-Y score exclusively influences escape decisions 
when the threat is distant (in the case of the slow-attacking preda-
tor), but not when the threat is imminent (in the case of the fast-
attacking predator). A visualization of BOLD response as a function 
of trait anxiety for select regions is shown in Supplementary Fig. 2.

To assess the interaction of brain regions involved in escape deci-
sions, we performed a generalized psychophysiological interaction 
(gPPI) analysis18. Given the theoretical and empirically demon-
strated involvement of the vHPC in cognitive fear and anxiety4,19, 
and because of its exhaustive bidirectional anatomical connections 
with the amygdala and its nuclei, as well as its functional role in 
fear, stress and emotion15,20,21, we chose vHPC as an independent 
seed region (see Supplementary Table 3 for a corresponding analysis 
using the entire hippocampus as a seed region). A corresponding 
structural region of interest was obtained using the WFU PickAtlas. 
This first-level gPPI analysis on the slow versus fast predator con-
trast is reported in ref. 5, and will not be reported here for brevity. 
We then added STAI-Y score as a regressor in a second-level analy-
sis. STAI-Y score significantly modulated the functional coupling 
between the vHPC seed, bilateral mPFC, right inferior frontal gyrus 
and left insula (Fig. 2b and Table 2). Overall, this suggests that these 
macrocircuits are those that facilitated the impact of STAI-Y score 
on escape decisions in the slow predator condition.

Our results provide evidence that trait anxiety can influence 
escape decisions, but only under conditions of relatively prolonged 

Table 1 | activation table for second-level Stai-Y score 
correlation for the slow versus fast predator contrast

Brain region Left vs 
right

Cluster 
size

T 
score

MNi coordinates

x y z

Hippocampus L 60 5.32 −15 −27 −6

Postcentral gyrus L 209 4.91 −45 −18 54

mPFC L 63 4.70 −3 51 −14

Insula L 94 4.53 −40 8 −3

Insula R 107 4.74 36 6 −6

Amygdala R 15 4.93 22 0 −20

P < 0.05, FDR corrected.
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threat, compared with more imminent threats2,6,22. This disassocia-
tion implies that trait anxiety selectively affects decisions of different 
ethnological classes, as distinguished by the amount of time afforded 
for reflection and cognitive strategizing. The notion of dichotomous 
mapping between temporally proximal threats and fear, and tem-
porally distal threats and anxiety is not new. For example, rodents’ 
defensive behaviour differs when a threat is distal versus when it is 
immediate23, and anxiolytic drugs appear to only affect the former8. 
Likewise, previous models of threat evaluation have suggested that 
both anxious and non-anxious individuals will respond similarly to 
proximal threats, but individuals with high anxiety will exhibit dif-
ferential behaviour in response to more distal threats1. Our study 
provides empirical evidence that trait anxiety selectively impacts 
escape decisions in humans under this specific class of threat.

The interpretation that trait anxiety affects only cognitive fear 
behaviour was supported by our neuroimaging results. These 
results showed that brain areas previously indicated to be involved 
with behavioural flexibility and information-processing aspects of 
fear responses (including the hippocampus, amygdala, mPFC and 
insula4,5,16) covaried with trait anxiety. However, areas associated 
with reactive fear—the PAG, superior colliculus, midcingulate cor-
tex and central nucleus of the amygdala4,5,24—were not significantly 
affected by variability in anxiety. Notably, these findings strongly 
support theories based on defensive distance25, whereby defensive 
responses to immediate threats and dangers map onto low-level 
brain areas such as the PAG, whereas responses to physically or psy-
chologically distal or anticipated threats map to higher-level areas 
such as the PFC24,26. Our findings extend these theories by provid-
ing a clear disassociation of the effects of trait anxiety on one circuit 

over the other, with accompanying behavioural effects, in an eco-
logically relevant paradigm.

These seed-based functional coupling results are consistent with 
previous non-human animal studies showing functional interac-
tions between the ventral and dorsal hippocampus and vmPFC 
in anxiety-provoking environments11,12,27. For example, local field 
potential recordings in rodents have shown that there is synchrony 
in theta oscillatory activity between vHPC and mPFC, and that 
this synchrony is increased in anxiogenic environments12. In addi-
tion, single-unit recordings have shown that cells in the mPFC have 
stronger anxiety-related firing patterns when phase-locked with 
local field potentials in the vHPC11. Using magnetoencephalogra-
phy, others have corroborated these non-human animal findings 
in humans28. Our results parallel both the human and non-human  
animal evidence for functional coupling between the vHPC 
and mPFC, and further consolidate the characterization of this 
interaction with a different brain-imaging method.

The specific nature of the coupling between the vHPC and mPFC 
has garnered some previous discussion. For example, because 
vHPC–mPFC connections are unidirectional29, it has been sug-
gested that the vHPC primes the mPFC to represent anxiety-related 
features of the environment, possibly using memories of threats to 
estimate threat probability28. The mPFC has efferent projections to 
the amygdala and PAG, and these connections have been suggested 
to be the downstream areas responsible for the initiation of defen-
sive behavioural responses24,30 and the inhibition of exploratory 
behaviours11. To complement this, the vHPC also has direct projec-
tions to the basolateral amygdala (BLA), bed nucleus of the stria 
terminalis and lateral hypothalamic area, which can also facilitate 
anxiety responses15.

In light of the results from our study, it is possible that vHPC 
may encode the previously learned threat context (that is, the pred-
ator condition) and relay this information to the mPFC where it 
influences strategic decision-making. Our results suggest that the 
observed increase in connectivity between the vHPC and mPFC 
in trait-anxious individuals may reflect a priming mechanism that 
lowered the threshold for escape responses, resulting in earlier 
escape decisions10. However, for the fast predator condition, this 
slow, deliberative priming is not sufficient; thus, the initiation of 
behavioural responses appears to bypass this connection. One com-
pelling question is whether trait anxiety merely interacts with this 
vHPC–mPFC mechanism or whether it can be fully identified with 
information processing between these subregions. While we specu-
latively provide this neural mechanism for trait anxiety—which is 
also supported by the non-human animal literature—we emphasize 
that this requires causal corroboration, perhaps in the form of phar-
maceutical manipulations in humans. While our study lacked the 
appropriate design and power for this approach, one further piece of 
evidence that would provide compelling support for such a mecha-
nism would be trial-by-trial prediction of FID using brain activity 
in vHPC–mPFC.

Notably, we did not observe modulation of the BLA, bed nucleus 
of the stria terminalis or lateral hypothalamic area by trait anxiety. 
One likely possibility is that these areas are involved in longer-term 
anxiety responses, requiring the recruitment of corticotropin-
releasing hormone23, and that our slow predator condition was 
not adequately protracted to cause these responses. Given that the 
BLA and amygdala have strong inputs to the vHPC31,32, another 
possibility is that these areas are more commonly recruited during 
fear learning (which we did not examine) and imbue the encod-
ing of environmental stimuli with emotional salience (for example, 
ref. 33). Indeed, most empirical evidence of the increased involve-
ment of the amygdala in trait-anxious individuals has come from 
learning paradigms and studies of fear conditioning (for example, 
ref. 34). Thus, trait anxiety is likely to affect both the encoding of 
threats and their retrieval from memory, potentially via different 
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Fig. 2 | Neural activity. a, Neural activity associated with STAI-Y score 
for the slow versus fast predator contrast at two different coronal plane 
coordinates, given in Montreal Neurological Institute (MNI) space. Red 
areas represent significant activity thresholded at P < 0.05 (false discovery 
rate (FDR) corrected). b, gPPI-coupled brain areas modulated by STAI-Y 
score. Hipp, hippocampus; MCC, mid cingulate cortex.
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neural substrates. This may be of critical importance for many 
clinical anxiety disorders (such as post-traumatic stress disorder) 
where threats have already been learned. One further possibility, 
as suggested previously28, is that the vHPC is specifically involved 
in threat memory retrieval only when there is approach–avoidance 
conflict35–37, as was the case with the trade-off between reward and 
threat of shock in our task.

Previous research has also suggested the possibility that mPFC 
representation of the environment depends on the strength of the 
vHPC input: moderate input appropriately signals the aversive-
ness of specific features, but strong input decreases discriminative 
capability, leading to generalized anxiety responses11. In our study, 
we were not able to evaluate individuals’ abilities to discriminate 
between different levels of threat, but this would be a promising 
avenue for future research. In particular, this might suggest that 
populations with clinical anxiety disorders may exhibit increased 
coupling between the vHPC and mPFC across threat levels, and 
consequently faster escape decisions for all predator conditions.

The impact of trait anxiety on escape decisions could influence 
survival outcomes in at least two important ways38,39. First, if indi-
viduals with high trait anxiety escape predators earlier, they expe-
dite other behaviours, such as foraging, and thus may accrue fewer 
primary rewards. Our results support this idea by showing that 
those with higher trait anxiety earned less total reward in our task. 
In contrast, it could be argued that a more survival-relevant perfor-
mance metric is successful escape (additional reward is irrelevant 
if caught by a predator). Our results also showed that individuals 
with higher trait anxiety made a higher proportion of success-
ful escape decisions. However, unlike reward, which was affected 
across all predator conditions, individuals with higher trait anxiety 
only made a higher proportion of successful escape decisions within 
the slow predator condition, in line with the idea that trait anxi-
ety only affects flight decisions under these contexts. One possible 
explanation for this difference may have been that trait anxiety also 
affected escape responses in the medium and fast predator condi-
tions, but to a lesser, non-significant degree. This is especially pos-
sible considering that there is some individual variability both in 
trait anxiety and performance in general; thus, our specification of 
cognitive and reactive fear classes will not have perfectly divided 
performance in these individuals. A series of experiments spanning 
a large range of predator conditions and reward contingencies may 
be able to address this issue with more clarity, and perhaps reveal 
population-level differences in how trait anxiety influences perfor-
mance. Ultimately, both the accrual of reward and successful escape 
are important factors for survival, and differences in trait anxiety 
appear to arbitrate between these, depending on the threat context.

Coexisting with a disassociation of anxiety and fear based on 
defensive distance is a disassociation based on defensive direction26. 
The ‘direction’ of this construct refers to approach versus avoidance, 
and theoretical work proposes that fear drives avoidance of danger, 
while anxiety drives approach towards danger26. In our experimental 

design, an approach–avoidance conflict existed between reward and 
the threat of shock. Because the slow predator condition allowed 
individuals to earn greater reward, this condition may have elicited 
greater relative anxiety. Under the defensive direction framework, 
we may have expected participants with higher trait anxiety to 
endure longer in this condition. However, we found that individuals 
scoring higher in trait anxiety escaped earlier, which speaks against 
defensive direction as a potential explanation for our behavioural 
results. However, it would be of interest for future experiments to 
more closely examine how defensive direction and trait anxiety 
relate to each other (see Supplementary Information for an analysis 
including a measure of behavioural inhibition).

Previous studies have also found evidence that anxiety can affect 
decision-making. For example, individuals with higher disposi-
tional anxiety are more likely to be more risk averse in tasks such 
as the balloon analogue risk task40. Our study makes an important 
contribution to this literature by situating individuals in an ecologi-
cal setting, where the effect of anxiety can be seen as a plausible 
adaptive role, rather than a straightforward deficit in decision-mak-
ing. As such, our findings support evolutionary accounts of anxiety 
disorders41,42. While it is important to note that our current find-
ings do not generalize to populations with clinical anxiety disor-
ders, such as post-traumatic stress disorder, our hope is that future 
research will capitalize on the distinctions between threat contexts 
to better diagnose and treat these disorders. One potential avenue, 
for example, would be to tailor treatments and interventions based 
on individual differences in threat categorization.

Overall, this study provides strong empirical support for the 
notion that trait anxiety affects behaviour only when there is 
sufficient time to appropriately cognize a threat, and not when 
threats require an immediate reactive response. These behavioural 
results were borne out in an ecologically relevant paradigm, and 
were complemented with neural data that suggest that previously 
learned threat contexts more heavily influence strategic decision-
making in trait-anxious individuals. The present study comple-
ments previous work describing the contexts under which reactive 
fear-defensive responses manifest3–5, and the behavioural and neu-
ral signatures of these responses, and in combination, they point to 
the importance of examining different ecological classes of threat 
in future work.

Methods
A total of 30 subjects were recruited according to the guidelines of the Columbia 
University Institutional Review Board after providing informed consent. Data 
from one subject were lost due to a computer error. One additional subject was 
excluded due to excessive movement during the scan. Our final sample consisted of 
28 subjects (17 female; age = 25.4 ± 7.3 years). No statistical methods were used to 
predetermine sample sizes, but our sample sizes were similar to those reported in 
previous publications4,5.

Stimuli, apparatus and procedure. This article constitutes an independent analysis 
of data from a previously published study5, with detailed methods reported here 
for completeness. Participants completed a computer-based task while in an fMRI 
scanner. The goal of the task was to earn as much money as possible while avoiding 
being caught by a virtual predator. Before the beginning of each trial, participants 
were presented with a 2 s cue indicating one of three different predator types 
that would be present in the upcoming trial. The participants were then shown 
a two-dimensional runway (distance: 90 units) with a triangle icon representing 
the position of the participant towards the right of the runway (at a distance of 
80 units) and a circle icon representing the position of a predator at the left side 
of the runway (at a distance of 1 unit). This predator had two distinct modes of 
movement. In ‘approach’ mode, the predator would proceed rightwards along the 
runway at 4 units s−1. At a randomly chosen distance (that is, the attack distance), 
the predator would switch to ‘chase’ mode, at which point it would advance at 
10 units s−1. These attack distances were randomly sampled from one of three 
Gaussian distributions, with means of 25, 40 and 50 (s.d.: 20, 20 and 20) for the 
slow, medium and fast predator types, respectively. Note that these predator types 
differed only in their mean attack distance, and not in the speed of their attack. 
Participants would passively gain money at a rate of 2 cents s−1 while they remained 
on the runway, and at any time could press a button to begin an escape towards the 

Table 2 | activation table for second-level Stai-Y score 
correlation for gPPi (vHPC seed)

Brain region Left vs 
right

Cluster 
size

T score MNi coordinates

x y z

Insula L 49 5.13 −33 9 0

mPFC R 168 5.00 15 60 −6

mPFC L 124 5.18 −18 51 −6

Inferior frontal 
gyrus

R 38 5.11 42 15 9

P < 0.05, FDR corrected.
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right side of the runway at 2 units s−1. Notably, if participants did not respond before 
the predator reached its attack distance, it was not possible for them to escape. This 
prevented participants from merely relying on their reaction time by responding 
after the predator switched modes. If participants escaped successfully, they would 
earn the monetary reward accumulated during that trial. If they failed to escape 
successfully (that is, were caught by the predator) participants were given a mildly 
aversive electric shock (the shock magnitude was calibrated to each individual 
before testing), and the monetary reward earned in that trial was forfeit. Thus, to 
perform this task optimally, participants had to learn the distributions of attack 
distances for each of the predator types and respond as late as possible, provided 
the distance between them and the predator (that is, the FID) was sufficient for a 
successful escape. Before the beginning of this main task, participants completed 
a brief, eight-trial practice session to familiarize themselves with the paradigm. 
The attack distances of the predators were drawn from different distributions from 
those used in the main task. Participants then completed 96 trials of the main task. 
After 48 trials, the predator-colour cue was reassigned to maintain the attentional 
demands of the task. Participants also performed a matching control condition 
for each predator type, without the risk of shock or the incentive of monetary 
reward, but otherwise identical to the main task. After completion of the computer 
task, subjects were asked to complete a series of personality questionnaires that 
included the trait subscale of the STAI-Y17 and the behavioural inhibition system/
behavioural activation system scale43 (see Supplementary Fig. 1 and Supplementary 
Methods for an analysis of behavioural inhibition system scores). The computer 
task was programmed in Cogent with MATLAB. Data collection and analysis were 
not performed blind to the conditions of the experiments.

All fMRI data were acquired using a GE Discovery MR750 3.0T scanner  
with 32-channel head coil. The imaging session consisted of two function scans 
(each 20 min), as well as a high-resolution anatomical T1-weighted image  
(1 mm isotropic resolution) collected at the beginning of each scan session. For 
functional imaging, interleaved T2*-weighted gradient-echo echo-planar imaging 
sequences were used to produce 45 3-mm-thick oblique axial slices (repetition 
time = 2 s; echo time = 25 ms; flip angle = 77; field of view = 192 mm × 192 mm; 
matrix = 64 × 64). Each functional run began with 5 volumes (1,000 ms) before the 
first stimulus onset. These volumes were discarded before entering the analysis to 
allow for magnetic field equilibration. Participants viewed the screen via a mirror 
mounted on the head coil, and a pillow and foam cushions were placed inside 
the coil to minimize head movement. Electric stimulation was delivered using a 
BIOPAC STM100C.

Data analysis. All statistical analyses for the behavioural data were carried out in 
R44 using the packages ezANOVA45, coxme46 and lme4 (ref. 47) (see Supplementary 
Software). Before analyses, data were tested for normality and equal variances 
using Shapiro–Wilk and Mauchly’s sphericity tests, respectively. Where 
appropriate, log transformations of the data were performed to account for non-
normality and Greenhouse–Geisser corrections were performed to account for 
violations of sphericity, with ε values and original degrees of freedom reported. 
For mixed models, P values were generated from Satterthwaite approximations 
to degrees of freedom. Confidence intervals are 90% for eta-squared effect sizes 
and 95% for all other effect sizes. Where appropriate, we corrected for multiple 
comparisons using the Holm–Bonferroni method. All tests were two tailed unless 
otherwise specified. We used an alpha level of 0.05 for all statistical tests.

Analysis of fMRI data was carried out using scripted batches in SPM8 
software (Wellcome Trust Centre for Neuroimaging) implemented in MATLAB 
7 (MathWorks). Structural images were subjected to the unified segmentation 
algorithm implemented in SPM8, yielding discrete cosine transform spatial 
warping coefficients used to normalize each individual’s data into Montreal 
Neurological Institute (MNI) space. Functional data were first corrected for slice 
timing difference, and subsequently realigned to account for head movements. 
Normalized data were finally smoothed with a 6 mm full-width at half-maximum 
Gaussian kernel.

Preprocessed images were subjected to a two-level general linear model using 
SPM8. The first level contained the following regressors of interest, each convolved 
with the canonical two-gamma haemodynamic response function: a 2 s boxcar 
function for the onset of the trial (during predator-type cue presentation); a 4–8 s 
(duration-jittered) boxcar function from the onset to 2 s before participants’ flight 
decisions; a 2 s boxcar function for the time before participants’ flight decisions; 
and a 4–8 s (duration-jittered) boxcar function for the remainder of the trial. 
Mean-centred STAI-Y score ratings were included as orthogonal regressors. In 
addition, nuisance regressors consisted of motion parameters determined during 
preprocessing, their first temporal derivative and discrete cosine transform-based 
temporal low-frequency drift regressors with a cutoff of 192 s. Beta maps were 
used to create linear contrast maps, which were then subjected to second-level, 
random-effects one-sample t-tests. In addition, a flexible factorial model was used 
to examine the main effects of predator type. The resulting statistical maps were 
thresholded at P < 0.05, and we corrected for multiple comparisons using false 
discovery rate (FDR) correction (FDR whole-brain corrected)48,49.

After whole-brain analyses, a hypothesis-driven region of interest analysis was 
performed. These regions were chosen based on the results from a previous study 
using the same behavioural task (see ref. 5).

The functional connectivity analysis was performed for the response phase 
(escape decision) using a gPPI approach18. The vHPC was chosen as the seed 
region for subsequent gPPI analysis due to its functional role in fear, stress and 
emotion4,19 and its empirically demonstrated involvement in our previous study5. 
See Supplementary Information for a similar analysis that includes the dorsal 
hippocampus. In the gPPI model, regressors of interest included the three predator 
conditions (slow, medium and fast), their corresponding control conditions and 
the gPPI terms for the above-mentioned six conditions. Using the gPPI toolbox18, 
a first-level connectivity analysis was carried out based on the gPPI term of 
the direct comparison between the two predator conditions (slow versus fast 
attacking predator). A similar connectivity analysis based on the gPPI term of the 
comparison between the slow predator and control condition can be found in the 
Supplementary Information. As a second-level analysis, STAI-Y score was then 
introduced as a covariate to examine how trait anxiety alters the strength of the 
gPPI with respect to the seed regions.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Behavioural data can be found on the Open Science Framework (https://osf.io/
c4qbr/). fMRI data are available from the corresponding author on reasonable 
request.

Code availability
Code for all behavioural analyses can be found on the Open Science Framework 
(https://osf.io/c4qbr/). fMRI analysis code is available from the corresponding 
author on reasonable request.
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Data collection The computer task was programmed in Cogent with Matlab.
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Study description This study constitutes a quantitative experimental design.

Research sample The participant sample consistent primarily of students recruited from Columbia University.

Sampling strategy We employed a convenience sampling approach.

Data collection A computer was used to collect behavioral data. Electric stimulation was delivered using a BIOPAC STM100C. All fMRI data were acquired 
using a GE Discovery MR750 3.0 T scanner with 32-channel headcoil.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.

Data exclusions Data from one subject was lost due to computer error. One additional subject was excluded due to excessive movement during the scan 
(this was an established exclusion criteria). Our final sample consisted of 28 subjects. 

Non-participation No participants declined participation.

Randomization This was a repeated measures design. Conditions were counterbalanced.
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Population characteristics Participants were healthy, right-handed. 17 of 28 were female. Mean age was 25.4  +- 7.3 years.

Recruitment Participants were recruited according to the guidelines of the Columbia University Institutional Review Board after providing 
informed consent.

Ethics oversight Columbia University Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type Task-based, event related design.

Design specifications There were 96 trials per subject, each 11.75 seconds average in duration.

Behavioral performance measures A single response was measured from subjects on each trial; the distance at which they made a response.
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Acquisition

Imaging type(s) Functional and anatomical.

Field strength 3.0T

Sequence & imaging parameters For functional imaging, interleaved T2*-weighted gradient-echo echo planar imaging (EPI) sequences were used to 
produce 45 3-mm-thick oblique axial slices (TR = 2 s., TE = 25 ms, flip angle = 77, FOV = 192 x 192 mm, matrix = 64 x 64)

Area of acquisition Whole brain.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software SPM8 software (Welcome Trust Centre for Neuroimaging, London, UK) implemented in Matlab 7 (The MathWorks Inc., 
Natick MA). Structural images were subjected to the unified segmentation algorithm implemented in SPM8, yielding 
discrete cosine transform spatial warping coefficients used to normalize each individual’s data into MNI space. 
Functional data were first corrected for slice timing difference, and subsequently realigned to account for head 
movements. Normalized data were finally smoothed with a 6-mm FWHM Gaussian kernel. 

Normalization See above.

Normalization template See above.

Noise and artifact removal See above.

Volume censoring No volumes were censored.

Statistical modeling & inference

Model type and settings Preprocessed imaged were subjected to a two-level general linear model using SPM8. The first level contained the 
following regressors of interest, each convolved with the canonical two-gamma hemodynamic response function: a 2 s 
box-car function for the onset of the trial (during predator type cue presentation), a 4-8 s (duration jittered) box-car 
function from the onset to 2 s prior to participants' flight decisions, a 2 s boxcar function for the time prior to 
participants' flight decisions, and a 4-8 s (duration jittered) box-car function for the remainder of the trial. Mean-
centered trait anxiety ratings were included as orthogonal regressors. In addition, nuisance regressors consisted of 
motion parameters determined during preprocessing, their first temporal derivative and discrete cosine transform-
based temporal low frequency drift regressors with a cutoff of 192 s. Beta maps were used to create linear contrast 
maps, which were then subjected to second-level, random-effects one-sample t tests. In addition, A flexible factorial 
model was used to examine the main effects of predator type. The resulting statistical maps were thresholded at p < 
0.05, and we corrected for multiple comparisons using false discovery rate correction (FDR whole brain corrected). The 
functional connectivity analysis was performed for the response phase (escape decision) using a generalized 
psychophysiological interactions (PPI) approach.

Effect(s) tested We tested contrasts between predator conditions and their modulation by trait anxiety.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) We determined vHPC as an independent seed region given background literature. The corresponding 
structural ROI was obtained using the WFU Pickatalas.

Statistic type for inference
(See Eklund et al. 2016)

Voxel-wise, see above.

Correction See above.
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